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Lewis (1969) invented signaling games to show that meaning convention can arise simply from
regularities in communicative behavior. This paper contributes to the question how the forma-
tion of signaling conventions depends on the social structure of a population. Our results not
only show that different language conventions can coexist, but also where to expect uniformity
and language contact. We found that place and time of convention formation can be traced
well to particular clusters of high/low values of suitable notions from formal network theory.
Against prior expectations, we found that agent rationality is less important than network role
in deciding how and when an agent adopts a convention.

1. Introduction

Lewisean signaling games have become a standard model for the pragmatic evo-
lution of semantic meaning (cf. Steels, 1997; Nowak & Krakauer, 1999; Skyrms,
2010). In order to understand the applicability and conceptual adequacy of sig-
naling game models, the most important theoretical question that needs to be ad-
dressed is under which circumstances stable signaling conventions can arise. Fol-
lowing a general trend in evolutionary game theory, recent studies have started
to probe into the simplifying assumption underlying classical evolutionary dy-
namics that populations of agents are homogeneous, i.e., barring of social struc-
ture. Dispensing with this artificial assumption, Zollman (2005), for instance, has
demonstrated for a so-called imitate-the-best dynamic how coexistent language
conventions can evolve if the population of language users is arranged on a lat-
tice. Wagner (2009) studied the same dynamic on so-called β-graphs (defined
below) which exhibit more realistic small-world properties, namely a high clus-
tering coefficient, paired with a low characteristic path length (Watts & Strogatz,



1998). Wagner’s simulations showed that (i) the higher the clustering coefficients
the larger the fractions of players that acquire a unique signaling convention, and
(ii) the lower the characteristic path length the smaller the number of connected
regions of agents that use the same signaling convention.

This paper probes deeper into the relation between social structure and lan-
guage evolution in order to further our knowledge of synthetic evolutionary pro-
cesses in structured populations and thereby to pave the way for a more thorough
understanding of the sociological factors of linguistic variability. While previous
related work has focused on studying which global network structures are espe-
cially conducive to innovation and its spread (Ke, Gong, & Wang, 2008; Fagyal,
Swarup, Escobar, Gasser, & Lakkaraju, 2010), the present paper investigates more
closely the local network properties associated with (regions of) agents that have
successfully learned a language or not. In distinction to previous studies, we also
focus not on imitation, but on used-based learning dynamics from evolutionary
game theory. To study the effect of agent rationality on language evolutions, we
considered best-response dynamics and reinforcement learning.

Our most striking results, in a nutshell, were these. Firstly, we found that
languages form preferentially on locally highly connected subgraphs; borders be-
tween languages fall preferentially on regions ”in between” highly connected sub-
regions. Secondly, conventionalization depended crucially on local network prop-
erties, while the learning dynamics and the amount of agent rationality had hardly
any noticeable effect. Thirdly, we compared the local properties of agents who
had learned a language with those who had not, and of those who lived at the bor-
ders of language regions with those who lived in the interior. To characterize the
differences we found, we made a distinction between family men and globetrot-
ters, which we characterized by relative values of suitable clusters of properties
from formal network theory. We found that learners and interior agents tend to
be family men with tight local connections, while non-learners and border agents
tend to be globetrotters with wide-ranging global connections. Finally, we found
evidence that the first ones to adopt a convention were globetrotters, while it is
mainly family men who stabilize a convention after its inception.

2. Signaling games & learning dynamics

A signaling game is a game played between a sender S and a receiver R. Initially,
nature selects a state t ∈ T with prior probability Pr(t) ∈ ∆(T ), which S ob-
serves, but R doesn’t. S then selects a message m ∈ M , and R responds with a
choice of action a ∈ A. For each round of play, players receive utilities depending
on (in the cheap-talk case we consider here) the actual state t and the response ac-
tion a. We will here be concerned only with a simple variant of this game, which
we call Lewis game: there are only two states that are equiprobable, two messages
and two actions that correspond one-to-one with the states, indicated by the same
index. Players share an interest in successful communication, expressed by utility



function U(ti, aj) = 1 if i = j and 0 otherwise.
Although messages are initially meaningless in this game, meaningfulness

arises from regularities in behavior. Behavior is defined in terms of strategies.
A behavioral sender strategy is a function σ : T → ∆(M), and a behavioral
receiver strategy is a function ρ : M → ∆(A). A behavioral strategy can be in-
terpreted as a single agent’s probabilistic choice or as a population average. For a
Lewis game, exactly two isomorphic strategy profiles constitute evolutionary sta-
ble states (Huttegger, 2007). In these, strategies are pure (i.e., action choices have
probabilities 1 or 0) and messages associate states and actions uniquely, like so:
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Classical evolutionary game theory assumes a homogenous population of
agents and studies evolutionary processes on the aggregate population level. In
this paper we focus instead on more fine-grained agent-based evolutionary dy-
namics. Agents repeatedly play a Lewis game with those agents they are con-
nected with in their social network, and adapt their behavioral strategies based on
learning from previous interactions. We consider two kinds of learning dynam-
ics that differ with respect to how rational the learning agents are assumed to be:
best-response dynamics (BR) and reinforcement learning (RL).

Best-response dynamics. The idea of best-response dynamics is simple: agents
remember the past plays that they have been engaged in and derive from their
memory a belief about their opponents’ behavior; it is to that belief that they play
a rational best response. We assume here that agents form a belief about the collec-
tive behavior of all of their neighbors, not keeping track of each agent separately.
More concretely, a given agent’s belief about his neighborhood’s receiver (sender)
behaviorBr(a|m) (Bs(t|m)) is just a behavioral receiver (sender) strategy derived
by keeping track of all of the agent’s past interactions. The sender’s expected util-
ity for sending m in state t is EUs(m|t) =

∑
a∈ABr(a|m) × U(t, a). Accord-

ingly, the receiver’s expected utility is EUr(a|m) =
∑

t∈T Bs(t|m)×U(t, a). A
best response is an action choice that maximizes expected utility. This gives rise
to the following response rules for best-response dynamics:

σ(m|t) =

{ 1
| argmaxm EUs(m|t)| if t ∈ arg maxmEUs(m|t)

0 else
(1)

ρ(a|m) =

{ 1
| argmaxa EUr(a|m)| if a ∈ arg maxaEUr(a|m)

0 else
(2)

Reinforcement learning with limited memory. Reinforcement learning can be
captured by a simple model based on urns, also known as Pólya urns (cf. Roth &



Erev, 1995; Skyrms, 2010). An urn models a behavioral strategy, in the sense that
the probability of making a particular decision is proportional to the number of
balls in the urn that correspond to that action choice. By adding or removing balls
from an urn after each encounter, an agent’s behavior is gradually adjusted. For
signaling games, the sender has an urn Ωt for each state t ∈ T , which contains
balls for different messages m ∈ M . The number of balls of type m in urn Ωt

designated with m(Ωt), the overall number of balls in urn Ωt with |Ωt|. If the
sender is faced with a state t she draws a ball from urn Ωt and sends message m,
if the ball is of type m. The same holds mutatis mutandis for the receiver. The
resulting response rules for reinforcement learning are:

σ(m|t) =
m(Ωt)

|Ωt|
(3) ρ(a|m) =

a(Ωm)

|Ωm|
(4)

The learning dynamics are realized by changing the urn content dependent on the
communicative success. In detail: if communication via t, m and a is successful,
the number of balls in urn Ωt is increased by α ∈ N balls of type m and reduced
by γ ∈ N balls of type m′ 6= m. Similarly, for the receiver. In this way successful
communicative behavior is more probable to reappear in subsequent rounds. In
our experiments, all urns were initially filled with 100 balls and we set α = 10
and γ = 4. From previous work (Mühlenbernd, to appear) we knew that in order
to match the plasticity of different learning dynamics, we should consider BR-
learners with unbounded memory but RL-learners with bounded memory. For
that reason, an RL-learners’ urns only reflected the impact of the last 300 interac-
tions (irrespective of role) that the agent was engaged in. With an initially empty
memory, BR-agents initially played entirely at random, just like their RL-cousins.

3. Network games: design and basic notions

We modeled a structured population as a β-graph. A β-graph is obtained by first
considering a ring of nodes where each node is connected to its k nearest neigh-
bors and subsequently, for each node, rewiring its k/2 left neighbors to a random
vertex n with probability β (Watts & Strogatz, 1998). For our analysis, we created
10 such β-graphs with 300 nodes, k = 6 and β ∈ {.08, .09, .1}. These parameter
choices ensured the small-worldliness of our networks that we had to keep small
for obtaining enough data points at manageable computation costs. For each net-
work, we ran 20 trials each with either only BR- or only RL-agents. Agents
played the standard Lewis game. Communication happened randomly between
neighbors on the network, and each agent’s behavior was updated separately after
each round of communication the agent was involved in. We recorded strategies
of agents in suitably chosen regular intervals. Each trial ran until at least 90% of
agents had acquired a language, or each network connection had been used 3000
times in either direction. The latter was to ensure a compromise between a short
running time and sufficient time for learning, but also because we were interested



in the results of learning after a realistic time-span, not in limit behavior.
Our main goal was to investigate the relationship between meaning evolution

and social network structure. The theoretical challenge here lies in adequately
characterizing local network roles in terms of formal notions of network connec-
tivity, which can never be crisp, but must necessarily be of a probabilistic nature.
For our present purposes, however, a rather straightforward cross-classification
based on whether an agent is globally and/or locally well-connected turned out
to have high explanatory value. Using suggestive terminology, we will be mainly
concerned with two types of agents, family men and globetrotters. The former
have tight local connections, with less global connections; the latter show the op-
posite pattern plus a high degree of connectivity.

In order to capture these notions more adequately, we look at suitable no-
tions from social network theory (Jackson, 2008): betweenness centrality (BC),
closeness centrality (CC), degree centrality (DC), individual clustering (CL) and
eccentricity (EX).a High values for BC and CC, as well as low values of EX,
characterize agents that are globally at a central position in the network. So, for
a measure of global connectedness we looked at relative values of these proper-
ties. On the other hand, a high value for CL should be considered a measure for
the agent’s local connectedness. A high value for DC depicts a high degree of
connectivity. Family men and globetrotters are thus characterized as follows:

BC CC DC EX CL

family man low low - high high
globetrotter high high high low low

4. Results

Language regions. In order to determine which local network properties best
characterize where, on average, learning would be most likely successful, we
looked at what we will call language regions. A language region is a maximal
subset of agents that have acquired the same language that forms a connected
subgraphs. Despite the different learning dynamics, our data confirmed Wagner’s
(2009) results that in small world networks like ours the number of language re-
gions is small while the size of language regions is relatively big. Most of the
time, two big language regions formed, one for each signaling convention. BR-
dynamics, due to its slightly higher flexibility, was prone to produce a little more
regional variability. On top of that, we also found that each connected language re-
gion of a given type had always a higher average clustering and transitivity valueb

aFor the definition of BC, CC, DC and CL we refer to (Jackson, 2008), chapter 2. EX of a node v
is the maximum distance from v to all other nodes in the graph.

bGiven the (sub)-graph G: average clustering depicts the average CL value over all nodes in G and
transitivity depicts the fraction of all possible triangles in G that are in fact in G.



than the expected average value for a connected subgraph with the same size n (=
number of nodes), as depicted in Figure 1. We may conclude from this that local
cliquishness supports the evolution of a local language.
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Figure 1. Comparing observed clustering and transitivity of language regions with expected values
from randomly chosen connected subgraphs (solid lines, subgraph size along the x-axis).

Learners and border agents. Based on their learning success and network posi-
tion, we classified agents into (i) learners vs. non-learners and (ii) border agents
vs. interior agents. A learner is an agent who, by the end of a simulation run,
has acquired the same signaling convention in both her sender and receiver role
(for RL-agents this meant getting close enough to the pure strategy in question).
Interior agents have only neighbors who learned the same language as they them-
selves, while border agents are agents whose neighborhood is not uniformly be-
having in the same way that they do.

Our results were by and large the same for both learning dynamics: learners
tend to be family men, border agents tend to be globetrotters (see Figure 2). In-
tuitively speaking, this means that in order to successfully learn a language in a
social network an agent would have to be well embedded in a dense local struc-
ture. Globally well-connected agents, on the other hand, have difficulties learning
a language in a heterogeneous network, because they might be torn between dif-
ferent locally firmly established conventions. (Naturally, the difference between
interior and border agents also showed in the time course of learning: interior
agents acquired their language significantly faster than border agents.)

Rationality. A certainly surprising result of our experiments was that the learning
dynamics did not have much impact on the local network properties that charac-
terize regional learning success. Phrased more strikingly, we could conclude that
an agent’s location in the network was more influential to his behavioral adapta-
tion than his rationality. Still, there were, of course, notable differences between



BR

learners non-learners border interior

CL 0.4524100 > 0.4266016 0.4041671 < 0.4877772
CC 0.2048951 < 0.2063953 0.2095079 > 0.2014160
BC 0.01307722 < 0.01414102 0.017328919 > 0.009838327
DC 0.02006919 ≈ 0.02002832 0.02052166 > 0.01970899
EX 7.698488 > 7.672088 7.584469 < 7.785561

RL

CL 0.4529768 > 0.4227674 0.4053346 < 0.4872364
CC 0.2048325 < 0.2070318 0.2096410 > 0.2012726
BC 0.01302537 < 0.01469637 0.01729162 > 0.00983325
DC 0.02006223 ≈ 0.02013186 0.02052492 > 0.01970263
EX 7.700152 > 7.653051 7.573122 < 7.795518

Figure 2. Average local network properties of leaners vs. non-learners, and of border vs. interior
agents by different learning dynamics. Symbols <, >, ≈ indicate whether differences in means are
considered significant by a t-Test.
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Figure 3. Temporal development of the proportion of agents having settled into their final language
for BR-dynamics (left) and RL-dynamics (right). The right picture also plots the average values for CL,
BC, CC and DC for those RL-learners who have settled into their final language during the specified
interval of rounds. The graph shows that founding fathers (rounds 0-25) have properties similar to
globetrotters, whereas stabilizers (rounds 25-200) have properties more similar to family men.

learning dynamics. The most obvious difference is that BR-learners settle into
conventions much faster than RL-learners (see Figure 3).

Founding fathers and stabilizers. The slower RL-dynamics moreover showed
a very interesting connection between the temporal development of meaning for-
mation and network structure (see Figure 3 on the right): there seem to be three
phases of conventionalization which affect different network roles. In phase 1
(0-25) the first agents to adopt a convention (founding fathers) have relatively



high centrality values (BC, CC and DC) and a low CL and therefore properties
of globetrotters. In phase 2 (25-200) conventions were adopted by more locally
well-connected family men (stabilizers) with lower centrality values and a high
CL. The last agents to adopt a convention, (after ca. 200 rounds) again show the
mark of globetrotters. This suggests the interpretation that a convention is usually
sparked by globetrotters who are free approach a pure strategy, while it takes a
locally well-connected set of family men to fix a meaning convention, so that it
can also affect the (remaining) globetrotters.
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