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eMail: roland.muehlenbernd@uni-tuebingen.de

Abstract. To depict the mechanisms that have enabled the emergence
of semantic conventions, philosophers and researchers particularly access
a game-theoretic model: the signaling game. In this article I argue that
this model is also quite appropriate to analyze not only the emergence
of a semantic convention, but also its change. I delineate how the ap-
plication of signaling games helps to reproduce and depict mechanisms
of semantic change. For that purpose I present a model that combines
a signaling game with innovative reinforcement learning ; in simulation
runs I conduct this game repeatedly within a multi-agent setup, where
agents are arranged in social network structures. The results of these
runs are contrasted with an attested theory from sociolinguistics: the
‘weak tie’-theory. Analyses of the produced data target a deeper under-
standing of the role of environmental variables for the promotion of i)
semantic change or ii) solidity of semantic conventions.
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1 Introduction

“What are the mechanisms that can explain the emergence of semantic mean-
ing?” Philosophers have been concerned with this question for a long time.
Russell (1921) once said: “[w]e can hardly suppose a parliament of hitherto
speechless elders meeting together and agreeing to call a cow a cow and a wolf a
wolf.” With this proposition Russell wanted to make the following point: the as-
sumptions that i) semantic meaning is conventional and ii) semantic conventions
are a result of verbal agreements lead to a particular paradox of the evolution of
human language: language (as a tool to make verbal agreements) is needed for
language (in form of semantic meaning) to emerge.

Lewis (1969) found a very elegant solution for this paradox: he argued that
semantic conventions can arise without previous agreements, but just by regular-
ities in communicative behavior. He expounded his point with a game-theoretical
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model: the signaling game. This game basically models a communicative situ-
ation between a speaker and a hearer, and by playing this game repeatedly
and using simple update rules to adjust subsequent behavior, both participants
might finally agree on a convention without making an overt verbal agreement
in advance (cf. Skyrms, 2010). In other words: semantic conventions can arise
‘unconsciously’1 by repeated communication and simple adaption mechanisms;
and a signaling game is an elegant way to formalize these dynamics.

Apparently, quite similar mechanism can be assumed for the change of seman-
tic conventions, or to be more precise: the innovation, shift and loss of semantic
conventions. Like we cannot assume that speechless elders made agreements to
call a wolf a ‘wolf’, we furthermore cannot assume that the people in the 1970s
made a public announcement to use the word ‘groovy’ when they wanted to ex-
press that something is really nice, and another announcement in the 1980s, that
people shouldn’t use this word anymore. Just as semantic meaning can emerge
in an unconscious and automatic way, in the same way, expressions arise, change
their meaning, or get lost. Thus it seems to be plausible that a signaling game
is an appropriate model to explain general mechanisms of semantic change.

To study the dynamics of semantic change, I use repeated signaling games
in combination with an update mechanism that depicts unconscious behavior of
decision making: a modified variant of Roth-Erev reinforcement learning (Roth &
Erev, 1995), which is one of the most popular learning rule in combination with
repeated signaling games (cf. Barrett, 2009; Barrett & Zollman, 2009; Skyrms,
2010). The novelty of this study is the fact that I use this setup to analyze
the change rather than – as done is former studies – the emergence of semantic
conventions. Furthermore, I conduct simulation experiments of communicating
agents in social network structures to evaluate the environmental factors that
might or might not support change or stability of semantic conventions.

This article is divided in the following way: in Section 2 I present related
work that concerns mostly computational studies dealling with similar research
questions. In Section 3 I i) discus the advantages and disadvantages of my model
in comparison with others, and ii) motivate the research question of this paper in
view of real-world studies from sociolinguistics that hypothesize or give evidence
about the way network structure plays a part in the mechanisms of language
change. In Section 4 I introduce some basic notions of repeated signaling games,
reinforcement learning dynamics and network theory. Furthermore, I discuss a
noteworthy extension for reinforcement learning, called innovation (cf. Skyrms,
2010; Alexander, Skyrms, & Zabell, 2012). It can be shown that this additional
feature realizes an interesting interplay between stabilizing and renewing effects
(cf. Mühlenbernd & Nick, 2014); and I adopt it for my experiments, which are
described and analyzed in Section 5. A final conclusion is presented in Section
6.

1 In a game theoretic sense, ‘unconsciousness’ of agents signifies that they do not
deduce a particular decision, but rather learn it by optimizing behavior.
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2 Related work

This section outlines relevant literature: four research directions of computa-
tional studies that investigate the development of conventions in a population
of multiple agents by analyzing repeated interaction.

2.1 Emergence of behavioral conventions

A popular direction that involves game-theoretical models is the study of behav-
ioral convention2, that deals with the analysis of coordination games, such as the
standard coordination game, the prisoners’ dilemma or the intersection game
(cf. Axelrod, 1984; Airiau, Sen, & Villatoro, 2014). As one of the first studies
in this field, Young (1993) analyzed a repeatedly played n-player coordination
game combined with a non-deterministic variant of the reinforcement learning
rule fictitious play (Brown, 1951). Young was able to show that players always
select a pure Nash equilibrium of the game as a behavioral convention. In a sub-
sequent study, Shoham and Tennenholtz (1997) relaxed Young’s precondition
that all players play the same game by analyzing n − k stochastic social games
(standard coordination game and prisoners’ dilemma), where n agents play k-
player games. They i) defined and used the reinforcement learning rule highest
cumulative reward (HCR), and ii) showed that a convention is guaranteed to
emerge with all agents using HCR.

Still, note that Shoham and Tennenholtz (1997) used a model where agents
interact with randomly selected partners from the whole population, thus they
did not reconsider a particular network topology. A number of subsequent stud-
ies incorporated more realistic topologies, such as small-world networks.3 In this
field, Airiau et al. (2014) studied the emergence of behavioral conventions in
different network topologies, also in a scale-free small-world networks. Their
model involved the coordination game and the intersection game with varying
parameters. Furthermore, they applied next to Fictitious Play two further kinds
of reinforcement learning rules. With their experiments in scale-free networks,
they found out that multiple regions of local conventions can emerge, and that
a stable get-together of adjacent regions can be explained by particular net-
work features. Unfortunately, Airiau et al. (2014) didn’t point out the concrete
properties that support emergence and stability of multiple conventions.

2.2 Emergence of lexical conventions

Another relevant research direction involves the study of lexical conventions by
analyzing so-called language games, such as the popular naming game (Steels,

2 Note: in the literature under discussion this phenomenon is solely called ‘conven-
tion’ (or sometimes ‘norm’). I label it ‘behavioral convention’ to distinguish this
phenomenon from more communication-related types of conventions.

3 A good overview of subsequent studies that concern different particular network
typologies is given in Airiau et al. (2014).
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2002): such a game i) models an interaction between a speaker and a hearer
who try to find names for objects to understand each other, and ii) is generally
used to investigate how a common lexicon is established in a society. A naming
game’s lexicon depicts a mapping between a set of concepts and a set of words.
A lexical convention is optimal in a society of agents, if all use the same lexicon
with a maximum specificity : a one-to-one mapping between concepts and words.

Salazar, Rodriguez-Aguilar, and Arcos (2010) investigate such a naming game
in a scale-free network and small-world network topology (Watts & Strogatz,
1998) of 1000 agents. In their model, agents do not update their behavior by
learning rules, but adopt lexical mappings of neighbors by a selection mecha-
nism called elitist selection. In their experiments, agents have a lexical space
of 10 concepts and 10 words. The simulation experiments showed that in each
simulation run a global lexical convention with maximum or almost maximum
specificity emerged, whereby conventions i) evolve much faster in a scale-free
network, but ii) have a better average specificity in a small-world network. Fur-
thermore, by integrating a random innovation mechanism that allows agents
to invent new mappings, lexical conventions with maximal specificity emerge in
every simulation run for both network topologys.

In an experimental approach, (Centola & Baronchelli, 2015) tested a similar
game in online experiments: they found out that in dependence of the network
typology either multiple local conventions (spatial and random network), or one
global convention emerged (homogeneous mixed population).

2.3 Emergence of signaling conventions

Another line of research investigates the emergence of semantic meaning – in
form of so-called signaling conventions – in structured populations, by analyzing
the dynamics of repeated signaling games. A signaling game models a commu-
nication situation between a sender and a receiver, where the sender encodes
an information state t with a message m, and the receiver decodes m with an
interpretation state a. Simply put, a signaling convention depicts a compatible
pair of patterns of communication between sender and receiver (see Section 4
for a detailed definition).

As a first study in this research direction, Zollman (2005) made experiments
with a simple signaling game (two information/interpretation states and two
messages) combined with the imitation rule imitate-the-best on a toroid lattice
structure (100 × 100 agents). His results revealed the emergence of multiple
regions using a local convention. Wagner (2009) adopted Zollman’s model with
a different network topology: a small-world network (Watts & Strogatz, 1998);
and he did not only reproduce Zollman’s result of the emergence of multiple
regions, but also revealed the role of two properties of the network structure:
i) the higher the clustering coefficient4 of the whole network, the higher the
probability that agents adopt signaling conventions at all, and ii) the higher the

4 For the definition of these network properties I refer to Jackson’s Social and Eco-
nomic Networks (Jackson, 2008), Chapter 2.
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Table 1. The different roles of agents in the emergence process of signaling conventions
and their characteristic combinations of network properties.

DC CC BC CL

founding fathers high low low high

stabilizers low low low high

late-learners high high high low

average path length4 of the network, the higher the number of regions with local
signaling conventions. Both facts lead to the result that simulation runs on a
small-world network generally result in the emergence of a small number of local
signaling conventions.

Finally, Mühlenbernd and Franke (2012) analyzed agents playing the simple
signaling game and update via Roth-Erev reinforcement learning (Roth & Erev,
1995) on small-world and scale-free network structures. As a basic result also
here a small number of local language conventions emerged. A finer analysis re-
vealed that an agent’s individual network features have a quite high correlation
with her role during the process by which a convention emerges: initiators of
a language convention (founding fathers), immediate adopters of this initiation
(stabilizers) and agents who tend to adopt late (late-learners) have quite differ-
ent combinations of the particular network properties degree centrality (DC),
closeness centrality (CC), betweenness centrality (BC) and individual clustering
(CL), as shown in Table 1. Stochastic analysis confirmed that these correlations
are significant.

2.4 The change of language use in social networks

Another line of research involves multi-agent simulations to analyze language
change, without applying game-theoretic models. Nettle (1999) simulated the
interactive behavior of members embedded in a grid structure where spatial
distance represents social distance and each agent can only possess one of two
competing variants of a linguistic item. In each step of a simulation run each
agent can keep her current variant or can adopt the other one, in dependence
on which one has the higher ‘impact’ value. This impact value is a combination
of i) a social impact value that integrates the number, social status and social
distance of other members using this variant, and ii) a functional bias of the
variant. Nettle tested his system for a range of different parameter settings and
came to the following results: i) a full substitution of one variant over the other
can only take place when super-influential high-status agents are involved, and
ii) a functional bias alone is never enough for a new variant to replace the old
one, since there is always a high social impact value required.

Ke, Gong, and Wang (2008) adopted a light version of Nettle’s impact equa-
tion, and integrated it in small-world networks. Their results revealed that a
new variant can replace an old one even without super-influential agents, but it
must have an enormously high functional bias in comparison to its competitor.
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Table 2. Research directions that apply simulation studies to examine the nature of
emergence/change of (mostly linguistic) conventions in multi-agent populations (no
requirement for completeness).

A B C D

Research
topic

Emergence of behav-
ioral conventions

Emergence of lexical
conventions

Emergence of signal-
ing conventions

General mechanisms
of language change

Object behav. convention lexical convention signaling convention linguistic item
Process emergence emergence emergence change
Adoption learning learning (innovation) imitation/learning imitation
Interaction coordination games language games signaling games influence flow
Selected
Literature

Young (1993)
Shoham & Tennen-
holtz (1997)
Airiau et al. (2014)

Steels (2002)
Salazar et al. (2010)
Centola &
Baronchelli (2015)

Zollman (2005)
Wagner (2009)
Mühlenbernd &
Franke (2012)

Nettle (1999)
Ke et al. (2008)
Fagyal et al. (2010)

In sum, both Nettle (1999) and Ke et al. (2008) used network simulation mod-
els to investigate the propagation of a new variant, but both also integrated a
functional bias – a network independent value – that plays an important role
in their analyses. This additional complexity is adequate for the appropriate re-
search question, but it masks the way how network features might influence the
propagation processes in language change on their own.

The following simulation study can be considered as ‘state of the art’ in
network simulation studies to investigate language change: Fagyal, Swarup, Es-
cobar, Gasser, and Lakkaraju (2010) used ‘scale-free’ small-world networks with
directed ties denoting the direction of influence, considering eight different com-
peting variants. Members of the network i) have a status value proportional to
their outgoing ties, ii) adopt a new variant of a neighbor (connected member)
with a probability proportional to the neighbor’s status, and iii) have only one
variant at a time in their inventory. Note that Fagyal et al. – in contrast to
Nettle and Ke et al. – i) did not consider any functional bias, and focused on the
impact of social biases in terms of status, and ii) defined social bias only in terms
of network structural features, since an agent’s status is defined by her number
of outgoing ties. This point advanced the social network approach by explaining
language change in terms of network properties, and Fagyal et al. followed this
direction by taking such properties into consideration exclusively. Their results
showed first of all that the propagation of a variant is realized by ‘central influ-
ential’ members, which is in accordance with Nettle’s result of super-influential
agents being a necessary condition for society-wide spread of a variant. As a
second result, they showed that ‘peripheral low-connected’ members – so-called
loners – are the source for innovations.

Table 2 shows an overview of all four research directions A, B, C and D.

3 Discussion

In its most general sense, language change can be seen as a new linguistic vari-
ant replacing an old one across some set of contexts. Although each instance
of linguistic change has its temporal and spatial inception, one of the greatest
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challenges in sociolinguistics is to determine which variables support the initia-
tion and propagation of a new variant (cf. L. Milroy, 1980; Croft, 2000; Labov,
2010). To better understand language change, we should ask: Which social cir-
cumstances support linguistic innovation? And which social environment is a
fertile ground for a new variant to spread?

An insightful theory in sociolinguistics about the role of ‘social network struc-
ture’ in language change is the ‘weak tie’-theory (J. Milroy & Milroy, 1985): As
a result of speaker innovation, a new variant i) emerges generally on so-called
‘weak ties’5, and ii) spreads via ‘central’ members6 of the local community. A
number of field studies indirectly support the ‘weak tie’-theory (cf. Labov, 1973,
1991, 2001; Trudgill, 1988; L. Milroy & Milroy, 1992; J. Milroy, 1996; Llamas,
2000; L. Milroy & Gordon, 2003) .

Note that also already discussed computational studies support the ‘weak
tie’-theory in parts. E.g. Fagyal et al. (2010) showed that a new variant spreads
via ‘central influential’ members. On the other hand, the study of Mühlenbernd
and Franke (2012) revealed that the initiators of a new convention to evolve –
the founding fathers – have a high degree centrality value, but rather low values
in closeness and betweenness centrality. This shows that one must be careful
with the interpretation of particular labels of individual network features such
as centrality, since they can be defined in diverse ways. Furthermore, none of
the presented computational studies has tested the impact of the strength of a
tie on innovation. All in all, with the aim to check the ‘weak tie’-theory within
a computational model, the main research question of this study is as follows:

Which individual network features support i) the innovation process of a
new variant, and ii) the spread of this variant to become a convention?

Note that research direction D is the only one that uses computational studies
for the change of a linguistic conventions, whereas all other directions deal with
the emergence of conventions. Furthermore the three studies of research direction
D have another thing in common: they depict individual language change simply
as the mechanism of one linguistic variant replacing another one, determined by
influence values. Therefore they abstract from an essential feature of language:
communicating information from a speaker to a hearer (see Mühlenbernd &
Quinley, 2013).

Research directions A, B and C give insights in the way conventions emerge
in a structured population. As classical game-theoretic studies, directions A and
C draw on relevant properties, such as the Nash equilibrium, which is a great
advantage in analyses of results. Furthermore, directions B and C have an ex-
plicit model of a communication process between a speaker and a hearer. In this
sense, the model of a signaling game allows for i) describing the communication

5 Weak ties are links that have a low strength, often defined by frequency or multi-
plexity of the connection. Weak ties connect mostly detached communities.

6 Note that centrality in a network can be defined in multiple ways, as introduced in
Section 4.4.
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process in an explicit way, and ii) performing a game-theoretic analysis at the
same time.

Having the advantages of signaling games as well as the research question
in mind, I chose to apply modeling techniques in accordance with direction C
to reproduce computational dynamics in accordance with direction D in a more
fine-grained way. All in all, this study is primarily a continuation of research
direction C, and it is inspired by research direction D particularly in the sense,
that the change rather than the emergence of a linguistic convention is the
process under investigation. In the following section I introduce the relevant
technical background for my computational study.

4 Signaling Games, Learning and Networks

This section gives a coarse technical and theoretical background to understand
the important concepts of this article: the signaling game, reinforcement learning,
the innovation mechanism, and some basic notions of network theory.

4.1 Signaling Games

A signaling game SG = 〈{S,R}, T,M,A, Pr, U〉 is a game played between a
sender S and a receiver R. T is a set of information states, M is a set of messages
and A is a set of interpretation states (or actions). Pr ∈ ∆(T )7 is a probability
distribution over T and describes the probability that an information state is
topic of communication. U : T × A → R is a utility function that generally
determines how well an interpretation state matches an information state.

Let us take a look at the simplest variant of the game where we have two in-
formation/interpretation states and two messages: T = {t1, t2}, M = {m1,m2},
A = {a1, a2}, a flat probability distribution: Pr(t) = 1/|T | ∀t ∈ T , and a simple
utility function that gives a positive value iff the interpretation state a matches
the information state t, marked by the same index: U(ti, aj) = 1 iff i = j, else
0. Figure 1 shows the extensive form game of this simple variant, which depicts
the way this game is played: an information state t ∈ T is chosen with prior
probability Pr(t) (here both states are equiprobable), which the sender wants to
communicate to the receiver8 by choosing a message m ∈M . The receiver wants
to decode this message by choosing an interpretation state a ∈ A. Communi-
cation is successful iff the information state matches the interpretation state,
which is indicated by the utility value at the end of each leaf. In this study I
only consider signaling games that are n× n′-games as defined in Definition 1.

Definition 1 (n×n′-signaling game). An n×n′-signaling game is a signaling
game SG = 〈{S,R}, T,M,A, Pr, U〉 with:

|T | = |A| = n, |M | = n′, ∀t ∈ T : Pr(t) = 1/|T | and U(ti, aj) =

{
1 if i = j
0 else

7 ∆(X) denotes the set of all probability distributions over a random variable X.
8 Informally spoken, the information state came to the sender’s mind. In game theory

we say that the state is chosen by an invisible participant, called nature N .
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N
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1 0

R

1 0

S

R

0 1

R

0 1

.5 .5
t1 t2

m1 m2 m1 m2

a1 a2 a1 a2 a1 a2 a1 a2

Fig. 1. Extensive form game for the 2 × 2- game. Note that the dashed lines denote
situations the receiver cannot distinguish, since he does not know the information state
ti of the sender, but only the message mj he received.

L1:
t1

t2

m1

m2

a1

a2
L2:

t1

t2

m1

m2

a1

a2

Fig. 2. The two signaling systems of the 2× 2-game.

Note that messages are initially meaningless in this game, but meaningfulness
can arise from regularities in behavior. Behavior is here defined in terms of
strategies. A behavioral sender strategy is a function σ : T → ∆(M), and a
behavioral receiver strategy is a function ρ : M → ∆(A). A behavioral strategy
can be interpreted as a single agent’s probabilistic choice.

Now, what circumstances can tell us that a message is attributed with a
meaning? The answer is: this can be indicated by the combination of sender
and receiver strategy, called strategy profile. A message has a meaning between
a sender and a receiver, if both use pure strategies that constitute a specific
isomorphic strategy profile. For the 2× 2-game there are exactly 2 such strategy
profiles, as depicted in Figure 2. Here in profile L1 the message m1 has the
meaning of state t1/a1 and message m2 has the meaning of state t2/a2. For
profile L2 it is exactly the other way around.

Lewis (1969) called such strategy profiles signaling systems. Such signaling
systems have interesting properties. Not only is the meaning of a messages de-
fined, but it can also be shown that signaling systems i) ensure perfect com-
munication and maximal utility, ii) are Nash equilibria over expected utilities
(Crawford & Sobel, 1982), and iii) are evolutionary stable states (cf. Wärneryd,
1993; Huttegger, 2007). Additionally, note that the number of signaling systems
increases disproportionately with the number of states and messages: an n×n′-
game has n′!/(n′−n)! different possible signaling systems.

At this point it is explained how semantic meaning can be expressed by
participants’ communicative behavior: a message has a meaning, if sender and
receiver communicate according to a signaling system. But this does not explain
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at all, how participants come to such a signaling system in the first place, by
expecting that messages are initially meaningless. To explore the paths that
might lead from a meaningless to a meaningful message, it is necessary to explore
the process that leads from participants’ arbitrary communicative behavior to a
behavior that constitutes a signaling system. Such a process can be simulated by
repeated signaling games, where the participants’ behavior is guided by update
dynamics, such as imitation and learning rules. An increasingly used learning
rule in combination with repeated signaling games is Roth-Erev reinforcement
learning (cf. Barrett, 2009; Barrett & Zollman, 2009; Skyrms, 2010).

4.2 Reinforcement Learning

Reinforcement learning can be captured by a simple model based on urns, also
known as Pólya urns (Roth & Erev, 1995). An urn models a behavioral strategy,
in the sense that the probability of making a particular decision is proportional
to the number of balls in the urn that correspond to that choice. By adding or
removing balls from an urn after each access, an agent’s behavior is gradually
adjusted. For signaling games, the sender has an urn ft for each state t ∈ T ,
which contains balls for different messages m ∈M . The number of balls of type
m in urn ft designated with m(ft), the overall number of balls in urn ft with
|ft|. If the sender is faced with a state t she draws a ball from urn ft and sends
message m, if the ball is of type m. The same holds in the same way for the
receiver. The resulting sender response rule σ and receiver response rule ρ is
given in Equation 1 and 2, respectively.

σ(m|t) =
m(ft)

|ft|
(1) ρ(a|m) =

a(fm)

|fm|
(2)

The learning rule is realized by changing the urn content in dependence of the
communicative success. The standard account works as follows: if communication
via t, m and a is successful, the number of balls in the sender’s urn ft is increased
by α ∈ R balls of type m (sender update), and the number of balls in urn fm

is increased by α ∈ R balls of type a (receiver update).9 In this way successful
communicative behavior is more probable to reappear in subsequent rounds.

The learning mechanism can be intensified by lateral inhibition: if communi-
cation via t, m and a is successful, not only will the number of ball type m in urn
ft be increased, but also will the number of all other ball types m′ ∈ M \ {m}
be decreased by γ ∈ R. Similarly, for the receiver. Franke and Jäger (2012) in-
troduced the concept of lateral inhibition for reinforcement learning in signaling
games and showed that it leads the system more speedily towards pure strategies.

Furthermore, negative reinforcement can be used to punish unsuccessful be-
havior. It changes urn contents in the case of unsuccessful communication in the
following way: if communication via t, m and a is unsuccessful, the number of

9 Note that the number of balls is just a metaphor for better comprehensibility of the
principle, and therefore the incremental value per urn can be ∈ R.
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balls in the sender’s urn ft will be decreased by κ ∈ R balls of type m; and the
number of balls in the receiver’s urn fm will be decreased by κ balls of type a.

Note that Roth-Erev reinforcement learning has the property to slow down
the learning effect: if the total number of balls in an urn increases over time,
but the rewarding value α is a fixed value, then the learning effect mitigates.
A way to prevent the learning effect from slowing down is to keep the overall
number of balls |f| on a fixed value Ω by scaling the urn content appropriately
after each round of play. Such a setup is a variant of so-called Bush-Mosteller
reinforcement (Bush & Mosteller, 1955). All in all, a reinforcement learning setup
for a signaling game can be given as defined in Definition 2.

Definition 2 (Reinforcement Learning Setup). A reinforcement learning
setup for a n×n′-signaling game SG = 〈{S,R}, T,M,A, Pr, U〉 is a tuple RL =
〈(σ, ρ), α, κ, γ,Ω, φ〉, with:

– sender response rule σ : T → ∆(M)
– receiver response rule ρ : M → ∆(A)
– reward value α ∈ R
– punishment value κ ∈ R
– lateral inhibition value γ ∈ R
– urn size value Ω ∈ R
– function determining initial urn settings φ

I would like to make three points clear: first of all, note that the response
rules (Equations 1 and 2) of reinforcement learning describe the way agents make
their decisions. It should be clear from the equations that such decisions are not
based on any assumption for rationality. In other terms: an agent does neither
make any use of assumptions about the other agent’s behavior, nor has she direct
access to the other agent’s history. Agents also do not try to achieve a future goal.
Agents simply choose more probably that strategy that has worked better in the
course of their own history. This distinguishes reinforcement learning from other
learning rules that incorporate a stronger notion of rationality, such as Fictitious
Play (Brown, 1951).10 Note that this lack of rationality in agents is desirable,
since language change basically happens in an unconscious manner, thus without
the presence of rational decisions, as discussed in Section 1.

As the second point, note that the notions of reinforcement learning as used
here differ from classical notions in computer science. For example, Sutton and
Barto (1998) identify three obligatory main subelements of a reinforcement learn-
ing setup: a policy, a reward function, and a value function. These subelements
can also be found in the given setup: the policy is represented by the response
rules (Equations 1 and 2), the reward function is represented by the update
mechanism that I described informally (including the reward value α and pun-
ishment value β), and the value function can be represented by an expected util-

10 For a discussion and comparison of reinforcement learning and Fictitious Play in
signaling game playing agents, see e.g. Mühlenbernd (2011).
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ity function over strategy pairs.11 Furthermore, note that the classical definition
of a reinforcement learning problem in computer science is “a straightforward
framing of the problem of learning from interaction to achieve a goal” (Sutton &
Barto, 1998, p. 51). As mentioned before, this also differs to the given account,
where agents are not intrinsically goal-oriented, but simply driven by the need
to communicate successfully.

Thirdly, note that this account of reinforcement leaning does not allow for
much exploration, which is the possibility to test new strategies, even if the
current strategy works well. Once an agent has learned a strategy that works
perfectly with her communication partners – in other words: a signaling system
– she has no incentive to change her strategy a bit.12 This point is an unrealistic
shortcoming of the given account, since if human language would work that
way, it would not change once its semantic system is established for all relevant
concepts of a society. But linguistic meaning is only stable from a myopic point
of view, since it is incessantly changing in the long run. These changes are result
of the fact that there is always a possibility for exploration, may it be conscious
or unconscious, and this possibility can be realized by a mechanism that I will
call innovation, which will be introduced in the next section.

4.3 The Mechanism of Innovation

With the goal to analyze dynamics concerning the change of signaling conven-
tions, an essential additional feature for the reinforcement learning setup is in-
novation. The basic idea stems from Skyrms (2010) – he calls it invention – and
can be described as follows: each sender urn contains, next to the balls for each
message, an additional ball type, which Skyrms calls black balls. Whenever the
sender draws a black ball from this urn, she sends a completely new message that
has never been sent before. In other words, the sender invents a new message.
Further experiments with this setup were made by Alexander et al. (2012) for
2-players games and by Mühlenbernd and Nick (2014) for spatial structures.

The second study (Mühlenbernd & Nick, 2014) used a reinforcement learn-
ing setup with negative reinforcement and lateral inhibition. In this setup the
black balls of the agents’ sender urns can increase and decrease in dependence
of communicative success. By naming the total number of an agent’s black balls
her force of innovation, the study revealed an interesting relationship between
society-wide force of innovation and communicative success: increasing commu-
nicative success leads to decreasing force of innovation, and vice versa.13

11 For a definition of expected utilities over strategy pairs, see e.g. Mühlenbernd (2011).
Note that signaling systems maximize expected utilities, therefore they are optimal
according to such a value function.

12 As mentioned earlier: signaling systems are Nash equilibria over expected utilities
and evolutionary stable strategies. Furthermore, in combination with the current
reinforcement learning setup, agents that have learned a signaling system stick with
it with a zero probability to change.

13 It was shown for experiments with 3-agent populations that the force of innovation
and communicative success reveal a significant negative correlation.



The Change of Signaling Conventions in Social Networks 13

Unfortunately, the fact that the number of possible messages is verbatim
unlimited (since the innovation mechanism produces a new message every time
a black ball is drawn) leads to the phenomenon that larger populations will
probably never find an agreement (or at least need an unmanageable amount of
runtime), but end up in a chaos of a never ending production of new messages.
This phenomenon was shown even for a little community of 6 agents. But it
has also been shown that by limiting the possible message set, this problematic
nature of a never ending chaos can be avoided (Mühlenbernd & Nick, 2014).

In such a game with a limited message set, agents do not send a completely
new message, when they draw a black ball, but send a randomly chosen message
from a fixed message set M . In this way the game keeps its innovative nature
(if |M | � n), but avoids runtime problems. Such a game is called an n × n′m-
signaling game and defined as given in Definition 3.

Definition 3 (n×n′m-signaling game). An n×n′m-signaling game is an n×n′-
signaling game with m = |M | possible messages and an optimal number of n′

messages.14

By conducting experiments with n × n′m-signaling games and a reinforcement
learning setup with innovation on a large population (e.g. a 100 × 100 toroid
lattice structure), Mühlenbernd and Nick (2014) revealed two thing:

1. Once a population has learned one unique signaling convention and reaches
perfect communication, the force of innovation has dropped to zero. In other
words, the society has reached a stable state: with usage of a unique semantic
convention and without any spirit for innovation.

2. If multiple local convention coexist, communication cannot be globally op-
timal, and therefore the force of innovation is never zero. Such a situation
causes little changes in the interaction between connected agents of neigh-
boring local signaling conventions (as defined in Definition 5) and might lead
to the change of the whole signaling convention of an area over time.

The second point resembles exactly the dynamic picture expected from the phe-
nomenon under investigation: change induced by variation. Since in this study
I am interested in the evaluation of more realistic social network structure, so-
called small-world networks, I introduce some basic notions of network theory
in the following section.

4.4 Basic Notions of Network Theory

To ensure that a network structure resembles a realistic interaction structure of
human populations, it should have small-world properties; c.f. Jackson (2008)
found out that these properties show in the analysis of human friendship net-
works. According to this line of studies, the essential two properties of small-
world networks are i) a short characteristic path length, and ii) a high clustering

14 Note that optimal number n′ defines the number of messages which are necessary to
create a signaling system.
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coefficient (Watts & Strogatz, 1998).15 Additionally, most often human networks
display a third property, namely to be scale-free: the frequency of agents with
ever larger numbers of connections roughly follows a power-law distribution. In
this sense I consider a special kind of a scale-free network, which is both scale-free
and has small-world properties (Barabási & Albert, 1999). This network type
can be constructed by a particular preferential attachment algorithm – called
Holme-Kim algotithm – that takes two parameters: m that controls the network
density, and p that controls the clustering coefficient (Holme & Kim, 2002).4

A main goal of this work is to investigate the relationship between the change
of meaning conventions and the structural properties of the network and its
members. My experiments showed that by analyzing the agents’ behavior and
dynamic features during a simulation run, there seems to be an explanatory value
of network properties that express an agent’s globally and/or locally connectiv-
ity and her embeddedness. Following Mühlenbernd and Franke (2012), in order
to capture these properties more adequately, I investigated suitable notions from
social network theory: degree centrality (DC) describes the local connectivity of
an agent, closeness centrality (CC) her global centrality, betweenness central-
ity (BC) her global connectivity in terms of information flow, and individual
clustering (CL) her embeddedness into the local structure.4

As I argued in Section 3, also the strength of ties between agents might play
an important role in language change. Easley and Kleinberg (2010) showed that
the strength of a tie between two agents has basically a strong linear correlation
with the overlap of both agents’ neighborhoods. To keep things easy I define the
strength of a tie by this neighborhood overlap. Furthermore, since my analysis
deals with agents rather than with ties between them, I calculate an agent’s ties
strength TS as the average strength value of all ties of this agent:

Definition 4 (Ties Strength). For a given network G = 〈N,E〉, whereby N
is a set of nodes (here also agents) and E ⊆ N × N is a set of edges, the ties
strength TS(n) of an agent n ∈ N is defined as

TS(n) =

∑
m∈N(n)

N(n)∩N(m)
N(n)∪N(m)

|N(n)|
(3)

whereby N(n) = {m ∈ N |{n,m} ∈ E} is the set of neighbors of agent n ∈ N .

Note: the notions of DC, CC, BC, CL and TS describe static network properties
of an agent, since they do not change during a simulation run and are determined
by the network structure and the agent’s position inside it.

As a final remark, since agents in populations generally agree on signaling
systems as groups, I call such a group-wide signaling system a signaling conven-
tion, as given in Definition 5.

15 For the definition of these network properties I refer to Jackson’s Social and Eco-
nomic Networks (Jackson, 2008), Chapter 2.
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Definition 5 (Signaling Convention). For a given network structure of agents
that play the repeated signaling game with their connected neighbors, a signaling
convention is a signaling system that is used by a group of connected agents.

5 Simulating Language Change

In my experiments agents in a social network communicate via signaling games
and update via innovative reinforcement learning. This leads to the effect that i)
multiple local conventions emerge (cf. Zollman, 2005; Wagner, 2009; Mühlenbernd,
2011; Mühlenbernd & Franke, 2012), and ii) agents invent new messages from
time to time, since communication is not perfectly successful in a society with
multiple conventions and therefore the force of innovation stays on a non-zero
level (cf. Mühlenbernd & Nick, 2014). As my experiments will show, while mostly
invented messages disappear as fast as they appear, from time to time new vari-
ants can spread and establish new regional conventions. Therefore, I analyze
if particular structural features support emergence and spread of innovation. I
examine if the results support the ‘weak tie’-theory.

5.1 Experimental Settings

I conducted simulation runs of agents that are placed in a social network struc-
ture. Per simulation step every agent communicates by playing a signaling game
with each of her direct neighbors. Each agent updates her behavior by innovative
reinforcement learning. The concrete settings of the experiments were as follows:

– network structure: a scale-free network with 500 agents (Holme-Kim algo-
rithm (Holme & Kim, 2002) with m = 2 and p = .8)

– signaling game: a 3× 39-signaling game

– reinforcement learning setup (see Definition 2): Bush-Mosteller reinforce-
ment with negative reinforcement, lateral inhibition (α = 1, κ = 1, γ = 1,
Ω = 20), innovation, and the following initial condition φ: each sender urn
contains only black balls, and each receiver urn has an equiprobable distri-
bution of each ball type

– initial simulation condition: for the first 100 simulation steps the network
is divided in 10 connected components, and agents communicate exclusively
with neighbors of the same component

– stop condition: reaching 100,000 simulation steps

– number of simulation runs: 10

Since I am interested in the mechanisms that show how and why semantic con-
ventions change, not how they evolve from the scratch, the simulation runs were
started with the given initial simulation condition, which ensures that 10 already
established local signaling conventions are given from the beginning (see Figure
3). In the following the results of the simulation runs are presented.
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Fig. 3. Exemplary scale-free network with 500 agents and 10 already established local
signaling conventions, differenced by color.

5.2 Global Values

To get a global picture of how the population behaves I measured the following
global values:

– average communicative success: the utility value averaged over all plays dur-
ing a simulation step

– average force of innovation: the number of black balls averaged over all
agents after a simulation step

– global number of signaling conventions: the total number of different signal-
ing conventions existent in the population at the given simulation step

Figure 4 shows the global values over time for an exemplary simulation run.
This example depicts the general nature of all simulation runs in this experi-
ment: the average communicative success increases up to a value of around .85,
and the number of signaling conventions decreases down to a value below 10.
Furthermore, both values oscillate quite strongly: the communicative success os-
cillates between .8 and .9, the force of innovation oscillates between .4 and .6,
and the number of signaling conventions oscillates between 6 and 10.

Especially the oscillation of the number of signaling conventions is an in-
dicator for local reactivity. To get a better understanding of what is actually
happening, Figure 5 shows a sequence of the first 10,000 simulation steps for the
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Fig. 4. Simulation run of a 3× 39-signaling game in a population of 500 agents placed
in a small-world network: average communicative success, force of innovation and the
number of society-wide signaling convention over 100,000 simulation steps.

number of learners for 6 different signaling conventions: here regions of new con-
ventions emerge, grow to a specific amount and (mostly) get eventually extinct.
This pattern shows quite nicely how semantic change is realized: an innovation is
made at one point in time and place, then it spreads and its number of speakers
increases to a specific amount and constitutes a region of a new signaling con-
vention. Such a region might decrease in members and finally get extinct at one
point. The research question of this study – as discussed in Section 3 – involves
the relationship of an agent’s static network properties and her contribution to
the process of semantic change.16 Note that such static network properties were
already defined in Section 4.4. The next step is now to define agent’s properties
that characterize her contribution to stability, innovation or spread. For that
purpose I define dynamic properties that depict the behavioristic characteristics
of an agent during a whole simulation run.

5.3 Agent Features

Considering the dynamic picture of language change in the simulation runs, I
was interested in detecting specific roles of agents that might support language

16 E.g. the ‘weak tie’-theory assumes a high negative correlation of an agent’s tie
strength (TS, see Definition 4) and her contribution to innovation, i.o.w. to start
new regions of signaling conventions.
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Fig. 5. Simulation run of a 3 × 39-game in a population of 500 agents placed in a
social network: the number of learners for 6 specific different signaling conventions
(distinguished by different colors) for the first 10,000 simulation steps.

change or strengthen local conventions. Following the study of Mühlenbernd and
Franke (2012), I was particularly interested in the way an agent’s static structural
features and dynamic behavioral features might correlate. Static features are
given by an agent’s network properties ties strength TS, degree centrality DC,
closeness centrality CC, betweenness centrality BC and clustering coefficient
CL, as introduced in Section 4.4.

Dynamic features of an agent can be defined by her behavior in relation i)
to her former behavior or ii) to other agents’ behavior during a simulation run.
Since I was interested in the way agents were involved in the innovation and
spread of a new variant, I defined the dynamic features innovation skill and
impact. To compare these values with a number of further dynamic features, I
also defined features called loyalty, majority preference, interiority, fraternity,
mutual intelligibility and adaptivity. For an agent n these features are defined as
follows:

– loyalty LOY (n): the proportion of simulation steps agent n played her fa-
vorite strategy (most often played strategy)

– majority preference MAJ(n): the proportion of agents using the same strat-
egy that agent n uses at a given simulation step, averaged over all simulation
steps

– interiority INT (n): the proportion of simulation steps for which agent n has
exclusively neighbors using the same strategy

– fraternity FRA(n): the proportion of agent n’s neighbors using the same
strategy that agent n uses at a given simulation step, averaged over all
simulation steps
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– mutual intelligibility MI(n): the average MI17 value of agent n to her neigh-
borhood at a given simulation step, averaged over all simulation steps

– adaptivity AD(n): the proportion of simulation steps at which agent n switched
to a neighbor’s strategy

– impact IMP (n): the proportion of simulation steps at which a neighbor of
agent n switched to agent n’s strategy

– innovation skill INV (n): the proportion of simulation steps at which agent
n switched to a new strategy, which no neighbor is actually using

5.4 Feature Analysis

In my analysis I measured the correlation of all 5000 data points18 and for
each possible combination of features. The resulting plot is shown in Figure 6:
correlations are depicted as circles (lower-left half) and correlation values (upper-
right half), whereby i) the size of the circles as well as the color saturation
represents the strength of the Pearson-correlation, and ii) the color represents
the direction of the relationship (positive: blue, negative, red).19

The results show first of all: the data support the weak-tie theory, since i)
INV has a high negative correlation with TS, and ii) IMP reveals a high posi-
tive correlation with all three centrality properties DC, CC and BC. Therefore,
agents that have contributed much to the innovation of new conventions (high
INV value) tend to have very weak ties on average (low TS value), and vice
versa. Furthermore, agents who have had a strong impact on neighbors (high
IMP value) are – in terms of all three centrality values – centrally located in
the network. All in all, agents with weak ties were mostly responsible for the
innovation of new conventions, which were afterwards propagated mostly by
central members.

There are further high correlations involving innovation skills: first of all,
INV has a very high negative correlation with LOY . Intuitively, this relationship
can go in two directions: first of all, agents who stick mostly to one convention
(high LOY value) do not contribute much to the innovation of new conventions
(low INV value). And second, agents who contribute much to the innovation of
new conventions (high INV value) do not stick mostly to one convention (low
LOY value). Both directions are quite reasonable, and, taken together, indicate
that conservative agents (high LOY value) and innovative agents (high INV
value) constitute separate groups. Additionally, INV has a very high negative
correlation with MI. This makes sense, since very innovate agents (high INV
value) produce conventions that are not know to the neighboring agents, and
their mutual intelligibility is – at least initially – quite low (low MI value). All
together, the high correlation of INV with LOY and with MI both is not a very

17 The mutual intelligibility value MI reproduces the expected utility for two different
strategy pairs. For the definition see Mühlenbernd and Nick (2014), Definition 3.

18 Data points are the agents’ features; for 10 simulation runs with 500 agents each.
19 Due to the fact that some numbers are hard to spot, all values of these Pearson-

correlations are also given in Table 3 (Appendix).
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Fig. 6. The correlations for all different pairs of features: the static network properties
ties strength TS, degree centrality DC, closeness centrality CC, betweenness centrality
BC and clustering coefficient CL; and the dynamic behavioral features loyalty LOY ,
majority preference MAJ , interiority INT , fraternity FRA, mutual intelligibility MI,
adaptivity AD, impact IMP and innovation skill INV .

surprising result, but is shows that the resulting correlations are comprehensible
and not counterintuitive by any chance.

Finally, another dynamic feature that significantly correlates with static fea-
tures is INT . Agents with a high INT value spend most of the time inside a
language region, thus having only neighbors which use the same convention. As
their static features reveal, they are strongly embedded in their local environ-
ment (positive correlations with CL and TS), but rater peripherally positioned
(negative correlations with DC, CC and BC). These agents are probably the
ones who sustain local conventions, since they show the feature combination of
stabilizers of the study by Mühlenbernd and Franke (2012) (see Table 1).

Note that all correlations discussed here are statistically highly significant,
each with a p-value below 0.01.
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6 Conclusion & Outlook

To understand the nature of languages change, one of the greatest challenges in
sociolinguistics is determining which social variables support the initiation and
propagation of a new linguistic variant (cf. Labov, 2010). An insightful theory
about the role of ‘social network structure’ in initiation and propagation pro-
cesses of language change is the ‘weak tie’-theory (J. Milroy & Milroy, 1985).
This theory was directly and indirectly supported by a number of field studies
(cf. L. Milroy, 1980; Trudgill, 1988; Labov, 2001). But those empirical studies
concentrate mostly on so-called ‘egocentris personal networks’ (L. Milroy & Gor-
don, 2003) and fail to capture the entirety of a wholes population social network
structure (for a discussion, see e.g. Mühlenbernd and Quinley (2017)). With this
study, I present an alternative approach for testing theories from sociolinguis-
tics/social sciences by applying a multi-agent account that allows for a precise
definition and modeling of social network structure and features.

The central model for communication is a game-theoretic one: the signaling
game. To analyze the dynamics of language change with this model might be –
on the first view – an ambitious challenge by considering that signaling games are
designed in a way that players are generally attracted to convention and stability.
For all that, I was particularly interested in the way environmental variables
in terms of network structure might describe characteristics that promote or
mitigate semantic change. For that purpose I made simulation experiments on
social network structures of agents that play the signaling game repeatedly with
connected neighbors and update their behavior by a simple dynamics: Roth-Erev
reinforcement learning. I extended this learning account by an additional feature
– innovation – that supports the changing nature of the population’s dynamics.

In my analysis I compared different features of agents – static network proper-
ties and dynamic behavioral properties of agents – to extract the characteristics
of different roles participating in language change. All in all, the results support
the ‘weak tie’-theory, under the assumption that the strength of a tie is defined
by its neighborhood overlap, as given in Definition 4.20

Since this study gives only a first impression where to look for network in-
duced forces of language change, there are at least two directions necessary to
reveal deeper results. First of all, the current data should be further analyzed
by i) detecting causal dependencies between features that deliver more infor-
mative data, or ii) using regression models to find out if there are non-trivial
interactions – e.g. non-linear dependencies – between network properties and
dynamic features of agents. Second, my current results indicate to analyze fur-
ther i) static properties, such as information flow measures (Jackson, 2008) or
closeness vitality (Koschützki et al., 2005); and ii) dynamic features like individ-
ual force of innovation, number of known messages, or the growth magnitudes
of an agent’s newly innovated signaling system. These two additional steps are

20 An open issue here is to test the ‘weak tie’-theory when the strength of a tie is
defined in other ways (cf. Mühlenbernd & Quinley, 2017).
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currently investigated and can hopefully enrich subsequent work by delivering
deeper insights into the role of innovation in dynamics of semantic change.
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Appendix: Correlation Values
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Table 3. The Pearson-correlation values (accurate to two decimal places) over 5000
data points (10 simulation runs× 500 agents) for all different pairs of features: the static
network properties tie strength TS, degree centrality DC, closeness centrality CC,
betweenness centrality BC and clustering coefficient CL; and the dynamic behavioral
features loyalty LOY , majority preference MAJ , interiority INT , fraternity FRA,
mutual intelligibility MI, adaptivity AD, impact IMP and innovation skill INV .

TS DC CC BC CL LOY MAJ INT FRA MI AD IMP INV

TS 1.0 -.13 -.36 -.15 .43 .35 -.03 .41 .09 .48 -.47 -.18 -.38

DC -.13 1.0 .45 .94 -.36 .08 .02 -.24 .04 -.07 -.01 .74 -.06

CC -.36 .45 1.0 .41 -.28 .06 .32 -.43 .11 -.15 .10 .35 .03

BC -.15 .94 .41 1.0 -.25 .04 .02 -.19 .08 -.09 .03 .70 -.01

CL .43 -.36 -.28 -.25 1.0 .22 .02 .39 .16 .41 -.31 -.29 -.25

LOY .35 .08 .06 .04 .22 1.0 .30 .28 .28 .72 -.75 .01 -.73

MAJ -.03 .02 .32 .02 .02 .30 1.0 .03 .17 .31 -.25 -.15 -.25

INT .41 -.24 -.43 -.19 .39 .28 .03 1.0 -.03 .50 -.42 -.25 -.30

FRA .09 .04 .11 .08 .16 .28 .17 -.03 1.0 .31 -.28 .08 -.25

MI .48 -.07 -.5 -.09 .41 .72 .31 .50 .31 1.0 -.08 -.15 -.84

AD -.47 -.01 .10 .03 -.31 -.75 -.25 -.42 -.28 -.80 1.0 .06 .63

IMP -.18 .74 .35 .70 -.29 .01 -.15 -.25 .08 -.15 .06 1.0 -.04

INV -.38 -.06 .03 -.01 .25 -.73 -.25 -.30 -.25 -.84 .63 -.04 1.0


