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Abstract. I present a game-theoretical multi-agent system to simulate the evo-
lutionary process responsible for the pragmatic phenomenon division of pragmatic
labour (DOPL), a linguistic convention emerging from evolutionary forces. Each
agent is positioned on a toroid lattice and communicates via signaling games, where
the choice of an interlocutor depends on the Manhattan distance between them.
In this framework I compare two learning dynamics: reinforcement learning (RL)
and belief learning (BL). An agent’s experiences from previous plays influence his
communication behaviour, and RL agents act in a non-rational way whereas BL
agents display a small degree of rationality by using best response dynamics. The
complete system simulates an evolutionary process of communication strategies,
which agents can learn in a structured spatial society. The significant questions are:
what circumstances could lead to an evolutionary process that doesn’t result in the
expected DOPL convention; and to what extent is interlocutor rationality necessary
for the emergence of a society-wide convention à la DOPL?
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Abbreviations: DOPL – division of pragmatic labour; BL – belief learning; NE –
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1. Introduction

During a party you accidentally eavesdrop on a group of colleagues
talking about suspicious sounding topics. By chance you pick up the
expression “John went to (the) jail”, and you’re not certain if the
speaker has really used the word “the”. What difference does this word
make? Obviously a deciding one! With this word you would infer the
literal interpretation that John went to the jail building, maybe to visit
a prisoner, but without it you would infer the prototypical interpre-
tation that John himself has been jailed. This example is an instance
of the pragmatic rule division of pragmatic labour (DOPL), originated
by Horn (1984). This rule says that a simple (unmarked) expression
describes a prototypical case, whereas a complex (marked) expression
describes a rare case. Horn presented many examples obeying his rule
and depicting conventional language use.

Recently, game-theoretical accounts characteristically based on Le-
wisean (1969) signaling games have gained popularity as a means to ex-
amine pragmatic phenomena and linguistic conventions. Lewis showed
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that a convention can be seen as a successful, self-reinforcing com-
munication strategy. According to these Lewisean signaling games, a
convention is, in rough approximation, a combination of strategies that
form a strict Nash equilibrium (NE). But for a multitude of phenomena
modelled via signaling games there exist more than one NE. But which
one depicts the convention? A host of work has been done to find a
solution concept for this task of equilibrium selection, especially by
using evolutionary game theory, and therein the popular replicator
dynamics (RD) account: in this framework, for example, Foster &
Young (1990) argued in support of the stochastically stable equilibrium
and van Rooy (2004a) argued that the strictly efficient strategy is
the unique equilibrium. All of these solution concepts show that for
signaling games parametrized in line with DOPL,1 the only convention
is a communication strategy obeying Horn’s rule. But is one or another
of these solution concepts explanatory enough to convince us that this
convention will always emerge?2 What happens if we modify the RD
account by extending update dynamics and network structure? Are
there conditions which avoid an emergence of a convention obeying
Horn’s rule? This all leads me to the first significant research question
of this paper:

What circumstances could lead to an evolutionary process that doesn’t
result in an equilibrium strategy of Horn’s rule as sole convention?

In this line of articles that treated pragmatic phenomena as linguistic
conventions derived through signaling games, van Rooy (2004a) was
exclusively concerned with the emergence of DOPL in language use. He
remarks that there evolved two traditions for the explanation of this
emergence, which Blutner & Zeevat (to appear) called the diachronic
view and the synchronic view. Horn himself had the diachronic view in
mind: He affirmed that this rule is a convention as a result of language
change and traces back to evolutionary forces. In contrast, the syn-
chronic view (Levinson (2000), Parikh (1991), Jäger & Ebert (2009))
apprehends language use according to DOPL not as a convention but
as a result of online processing concerning rationality considerations.
Whereas most examples depicting language use according to DOPL
call for a diachronic treatment, some call for a synchronic treatment.
But it isn’t always possible to make a clear dichotomy for every exam-
ple. Today’s interpretation as result of rational online processing could

1 In the next section I’ll show how to set signaling games parameters in the way
that the game depicts a DOPL situation.

2 Indeed a convention obeying Horn’s rule cover the majority of examples you
can find in the literature. But you can also find examples depicting a conventions
obeying the opposite of Horn’s rule, which, as we will see in the next chapter, is
called anti-Horn. Such examples are given e.g. by Schaden (2008)
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be tomorrow’s convention. This potential connection leads me to the
second significant research question:

To what extent is interlocutor rationality necessary for the emer-
gence of DOPL as a society-wide convention?

With this paper I want to answer these questions by situating signaling
games in a society of learning agents interacting on a simple social
network. By modifying the structural features of the network as well as
by changing the agents’ learning dynamics, I want to examine the cir-
cumstances responsible for non-emergence of communication strategies
according to Horn’s rule. To find out the extent to which rationality of
interlocutors is necessary for the emergence of DOPL, I compare two
learning accounts: The first is reinforcement learning, which depicts
non-rational, obstinate behaviour. The second is belief learning via
fictitious play combined with best response dynamics, which depicts
a more empathetic behaviour and a small degree of rationality.

2. Signaling games in evolution

To model strategic language use, I’ll use signaling games, as introduced
by Lewis (1969). According to his general idea, a common communica-
tive situation between a sender and a receiver is defined in the following
way: The sender has a private information state t ∈ T and has to choose
a message m ∈M to communicate it. The receiver has to construe this
message by choosing an interpretation a ∈ A as response to it.

For a signaling game to examine Horn’s rule two information states
are necessary, one for the prototypical and one for the rare case: T =
{tp, tr}. Furthermore, there are two messages, an unmarked and a
marked one: M = {mu,mm}. The interpretations correspond to the
information states: A = {ap, ar}. To distinguish the prototypical and
the rare cases, a probability function Pr : T → IR is necessary, which
describes how likely it is that a state t is topic of communication.
Thus the probability of the prototypical case must be higher than the
probability of the rare case: Pr(tp) > Pr(tr). In my model I adapt two
different DOPL games, one with the values Pr(tp) = .6 and Pr(tr) = .4,
which I call the weak DOPL game and one with the values Pr(tp) = .7
and Pr(tr) = .3, which I call the strong DOPL game. A distinction
between marked and unmarked expression is achieved by a cost func-
tion c : M → IR, whereby the marked message is more complex and
therefore more expensive than the unmarked one: c(mm) > c(mu). I
use the values: c(mu) = .1, c(mm) = .2 for both DOPL games. The
reason for such a function is that high complexity of a signal may lead
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to low utility, as Jäger (2008) pointed out. And as we’ll see next the
cost value dimishes the utility value.

Successful communication means that the receiver construes the in-
terpretation appropriate to the information state the sender wanted to
communicate. In this case, the outcome of both players has a utility
value of 1, otherwise 0 for failure. To be exact, this value is reduced
by the complexity and therefore by the cost value of the used message.
Taken together we get a utility function for both players, as shown in
equation (1).

U(ti,mj , ak) =

{
1− c(mj) if i = k
0− c(mj) else

(1)

This utility function depicts interlocutors with coinciding interests,
namely to communicate successfully. This means that the sender’s
information state should correspond to the receiver’s interpretation.
To maximize utility both players should coordinate their actions. The
sender’s communication behaviour can be described as a pure strat-
egy S ∈ [T → M ], the receiver’s behaviour as a pure strategy R ∈
[M → A]. In the present example, each participant has four pure
strategies to play: Horn strategy (SH for the sender, RH for the re-
ceiver), anti-Horn strategy (SaH , RaH), Smolensky strategy3 (SS , RS)
and anti-Smolensky strategy (SaS , RaS) as depicted in Figure 1.

SH :
tp mu

tr mm

SaH :
tp

mmtr

mu

SS :
tp mu

tr mm

SaS :
tp

mmtr

mu

RH :
mu ap

mm ar

RaH :
mu

armm

ap

RS :
mu ap

mm ar

RaS :
mu

armm

ap

Figure 1. All possible pure sender and receiver strategies

For both participants it holds that behaving according to Horn’s
rule means playing the Horn strategy, whereas the anti-Horn strat-
egy displays the opposite behaviour. Playing the Smolensky strategy
means for the sender to choose the cheapest message in any case and
for the receiver to choose the prototypical interpretation state in any
case, whereas playing anti-Smolensky strategy means acting exactly the
other way around. It is possible to compute how well a sender and a
receiver strategy would go together by computing the expected utility
EU(Si, Rj) of such a strategy pair (Si, Rj):

3 The Smolensky strategy is named in reference to Tesar & Smolensky (1998),
who applied this strategy as a starting strategy for agents in their simulations with
regards to the assumption that previous generations possibly weren’t aware of the
complex message.

article.tex; 23/08/2011; 20:30; p.4



Learning with neighbours 5

EU(Si, Rj) =
∑
t∈T

Pr(t)× U(t, Si(t), Rj(Si(t))) (2)

Figure 2 depicts the expected utilities for all 16 strategy combinations,
the left table for the previously defined strong DOPL game and the
right table for the standard Lewis game with uniform probabilities and
no message costs. The standard solution concept for finding the optimal
strategy pair in such a game is the Nash equilibrium (NE): a strategy
pair (Si, Rj) for which no player can increase his EU by switching to
another strategy. For the strong as for the weak DOPL game there are
three Nash equilibria: EH = (SH , RH), which depicts communication
according Horn’s rule, EaH = (SaH , RaH), where both behave exactly
in the opposite way and ES = (SS , RS). Only EH and EaH are strict
Nash equilibria, and exclusively EH is the Pareto efficient NE: the
NE with the highest EU. Nevertheless there is no reason why agents
shouldn’t remain in EaH . If both play anti-Horn and they know the
other is doing so, there is no motivation for both to switch to another
strategy. Thus we can imagine how both interlocutors would behave if
they were settled in an NE. But what kind of processes lead participants
to a particular NE?

To find an answer to this question there are two things to do. First,
under the assumption that an NE depicts a convention that is common
knowledge among a society, it is necessary to extend this two-player
game to a multi-agent system where agents can communicate with
different dialogue partners. Second, to simulate an evolutionary process,
agents should play this game repeatedly and adapt their play accord-
ingly. Thus it is possible that they will change their strategy because of
experiences of past played rounds. With these desiderata, our signal-
ing game should be integrated in an evolutionary game theory (EGT)
account. An abundance of research in recent years has endeavored to
combine linguistic phenomena and EGT, especially by integrating the

RH RaH RS RaS

SH .87 -.13 .57 .17

SaH -.17 .83 .53 .13

SS .6 .2 .6 .2

SaS .1 .5 .5 .1

R1 R2 R3 R4

S1 1 0 .5 .5

S2 0 1 .5 .5

S3 .5 .5 .5 .5

S4 .5 .5 .5 .5

Figure 2. Expected utilities for all strategies combinations. Left table: Values for
the predefined strong DOPL game. Right table: Values for the standard Lewis game
with uniform probabilities and no message costs.
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replicator dynamics (RD) (Taylor & Jonker, 1978), which became the
standard model in the field.

A refinement of NE under an EGT point of view is the evolutionary
stable strategy (ESS). An ESS is a strategy which, if adopted by a
population of agents, cannot be invaded by any initially insubstantial
alternative strategy. Unfortunately, as van Rooy (2004b) pointed out,
even this refinement doesn’t lead to only one solution in a DOPL game,
because EH as well as EaH are both ESS’s. Benz, Jäger & van Rooy
(2005) showed that if a society starts with a setting where all strategies
are played with equal probability, under RD it ends up in a state where
all agents adhere to EH .

These results show the superiority of EH compared with EaH in
classical EGT setups. But it is necessary to examine this task in a
more realistic account in two ways. First of all, agents should be more
sophisticated in that they undergo a learning process rather than a re-
production process like e.g. RD. And according to Huttegger & Zollman
(2011), who argue that concepts like ESS seem to have no connection
to games with integrated learning models, the solution concepts men-
tioned above are not in the least bit appropriate. Second, while in
all these accounts agents communicate randomly with every possible
participant, I use a more realistic structure where the distance of agents
on a lattice influences the probability of communication.

3. Update dynamics & Learning accounts

Response rules governing agent behaviour determine the update dynam-
ics for repeated games. In a multi-agent system where agents commu-
nicate via signaling games, as both sender and receiver, each agent has
a sender response rule ρs : T → ∆(M) that determines the probability
of sending a message m ∈M for a given state t and a receiver response
rule ρr : M → ∆(A) that determines the probability of choosing in-
terpretation a ∈ A to construe a received message m. Combining this
with a learning account means that agents’ responses are influenced
by their previous experiences. In the following two subsections I will
introduce the two learning accounts reinforcement learning (RL) and
belief learning (BL) with the corresponding response rules agents use
to make their decisions.

3.1. Reinforcement Learning

Reinforcement learning can be captured by a simple model based on
urns, also known as Pólya urns, where the probability of making a
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particular decision is proportional to the number of balls in an urn. The
distribution of the content of urns in each step is a result of previous
decisions. Such an urn model for learning processes in games was first
applied by Roth & Erev (1995), its combination with signaling games
was, inter alia, studied by Skyrms (2010) and can be modelled in the
following way: The sender has an urn Ωt for each state t ∈ T and each
sender urn contains balls bm for different messages m ∈M . The number
of balls bm in urn Ωt at time τ is designated with m(Ωt)τ , the overall
number of balls in urn Ωt at time τ with |Ωt|τ . If the sender is faced
with a state t at time τ , he draws a ball bm from urn Ωt and sends
message m. Thus the sender rule at time τ is the following:

ρs(t,m)τ =
m(Ωt)τ
|Ωt|τ

(3)

In compliance with that rule, the receiver has an urn Ωm for each
message m ∈ M with balls ba for different actions a ∈ A. The number
of balls ba in urn Ωm at time τ is designated with a(Ωm)τ , the overall
number of balls in urn Ωm at time τ with |Ωm|τ . If the receiver wants
to construe a message m received at time τ , he draws a ball ba from urn
Ωm and uses the interpretation a, which leads to the following receiver
rule at time τ :

ρr(m, a)τ =
a(Ωm)τ
|Ωm|τ

(4)

Up to now I have defined the response rules, but not the architecture
of the learning process as defined by the update rules. The standard
RL account works in the following way: after an agent has made his
decision he can observe if communication was successful or not. If a
sender observes that the message m he used to communicate state t
didn’t lead to successful communication, he simply puts the ball back
in urn Ωt. But if communication was successful, he puts not only this
ball in urn Ωt, but a second one. In this way behaviour that leads
to success is reinforced because it increases the probability that bm is
drawn in the next round. The same procedure is used for the receiver
urns.

For the given DOPL settings things are a little bit more complicated.
Because of message costs, (un)successful communication doesn’t nec-
essarily lead to the same utility value. If you communicate successfully
with the cheap message mu, the utility value is .9, whereas successful
communication with mm leads to a utility value of .8. Because the
utility values have only one decimal place, we obtain an integer by
multiplying the utility value by 10. This integer can be used to set
the number of balls added or subtracted. E.g. when a sender who
communicates successful by sending mm gets a utility value of .8, his
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appropriate urn is scaled up by 8 balls bmm . On the other hand, if
unsuccessful communication leads to a utility value of -.2, the content
of this urn is reduced by two balls bmm . To put things formally: If state
t is chosen by nature at time τ , message m is the type of ball the sender
draws from Ωt at time τ and action a is the type of ball the receiver
draws from Ωm at time τ , then ∆τ = U(t,m, a)× 10 is the urn update
value at time τ . The following equations describe the urn update rule
for the sender after drawing bm from Ωt:

m(Ωt)τ+1 = max[m(Ωt)τ + ∆τ , 10] (5)

Analogously the following equation describes the urn update rule for
the receiver after drawing ba from Ωm:

a(Ωm)τ+1 = max[a(Ωm)τ + ∆τ , 10] (6)

Notice that the max[x, 10]-structure in both update rules ensures that
there are at least ten balls of each message in every sender urn and
accordingly at least ten balls of each interpretation in every receiver
urn. This is a special extension in my model and guarantees that there
is always the possibility for each kind of ball to be drawn, even if the
probability becomes minute.

Another extension comparing with the standard account is called
lateral inhibition (Franke & Jäger (to appear)). In this extension there
is a suppressor value ε and after successful communication with state t,
message m and action a the number of balls bm′ ∀m′ 6= m in sender urn
Ωt will be decreased by ε. Accordingly the number of balls ba′ ∀a′ 6= a
in receiver urn Ωm will be decreased by ε. That means that successful
communication leads not only to increasing the balls involved but also
to decreasing the balls not involved. For my model I set ε = 3.

3.2. Belief Learning

While in the RL account agents make no rational decisions, in this
account agents display a small degree of rationality in the way that
they play a best response by maximizing their expected utilities. I call
EUs(m|t) the sender’s expected utility for sending message m in state t
and EUr(a|m) the receiver’s expected utility for construing message m
with interpretation a. Now a sender who wants to communicate state t
will use the message m which maximizes his expected utility EUs(m|t).
Accordingly, a receiver who received message m will construe it with
the interpretation a which maximizes his expected utility EUr(a|m). If
there are more choices, which maximize those EU ’s, then each choice
is equiprobable. To put it formally: if MAX(t) = arg maxmEUs(m|t)
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is the set of messages where each one maximizes the sender’s EU for a
given state t and MAX(m) = arg maxaEUr(a|m) is the set of actions
where each one maximizes the receiver’s EU for a given message m,
then we have the following sender and receiver response rules4:

ρs(t,m) =

{ 1
|MAX(t)| if m ∈MAX(t)

0 else
(7)

ρr(m, a) =

{ 1
|MAX(m)| if a ∈MAX(m)

0 else
(8)

The sender’s expected utility EUs(m|t) returns the utility value the
sender can expect for sending message m in state t. But this expected
value depends on what he believes the receiver would play. His belief
about the receiver Br(a|m) is a function returning the probability that
the receiver construes message m with a. Given this belief the sender’s
expected utility is defined in the following way:

EUs(m|t) =
∑
a∈A

Br(a|m)× U(t,m, a) (9)

The receiver’s expected utility EUr(a|m) returns the value the receiver
can expect for construing a received message m with interpretation a.
Thus he needs to have a belief about the sender Bs(t|m) that returns
the probability that the sender is in state t by sending message m.
Accordingly the receiver’s expected utility is defined as follows:

EUr(a|m) =
∑
t∈T

Bs(t|m)× U(t,m, a) (10)

Now where do these beliefs come from? The BL account of my model en-
genders a process of acquiring these beliefs by observation. Concretely,
a player’s belief is a mixed strategy representing all the interlocutor’s
observed past plays. E.g. assume sender and receiver had the same kind
of communicative situation many times before and that function σ(m)
returns the number of times the sender has sent message m to the
receiver. Likewise σ(a|m) returns the number of times the receiver has
interpreted a received message m with a. Because of these observations
the sender has the following belief Br(a|m) about the receiver:

Br(a|m) =

{
σ(a|m)
σ(m) if σ(m) > 0
1/|A| else

(11)

4 arg max stands for the argument of the maximum, that is to say, the set of
points of the given argument for which the value of the given expression attains its
maximum value: arg maxx f(x) = {x|∀y : f(y) ≤ f(x)}
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In the same way an evaluation of the receiver’s observations about the
sender’s behaviour leads to belief Bs(t|m) about the sender:

Bs(t|m) =

{
σ(t|m)
σ(m) if σ(m) > 0
1/|T | else

(12)

Notice that both equations contain the condition that the denominator
σ(m) must be greater than zero. This is not only to avoid a division by
zero. It also has a descriptive reason: if there has never been a commu-
nicative situation by using message m then both participants cannot
have beliefs through past observations. In this case, the probabilities
for this message are uniformly distributed, for the sender given by a
uniform distribution over all possible interpretations a ∈ A (1/|A|) and
for the receiver accordingly over all possible states t ∈ T (1/|T |).

In a repeated game after every communication situation the sender’s
belief Br(a|m) and the receiver’s belief Bs(t|m) as well will be updated.
Hence the belief about the interlocutor’s strategy results from previous
communications with his dialogue partners. This account is a simple
realization of Brown’s (1951) Fictitious Play.

All in all, both presented learning accounts are defined by a response
rule and an update rule. While the update rule of RL only depends
on the utility value of a communicative situation, the update rule of
BL considers the behaviour of the interlocutor to form a belief about
him. This means, that BL is a conscious, empathetic learning process
whereas RL can be explained as an unconscious or obstinate learning
process. Furthermore, as the response rule shows, BL demands ratio-
nality in the sense that the interlocutor has to find the best response
for a given belief, whereas RL agents make decisions randomly without
any need for rational deliberation.

3.3. Bounded memory

A feature of both learning accounts, and especially of RL, is the fact
that learned behaviour manifests itself very early and ingrains itself in
the dynamics. Barrett & Zollman (2009) show that forgetting experi-
ences increases both the dynamics of the system and the probability
of an optimal language evolving. They introduced different learning
accounts based on RL extended by different types of forgetting. I extend
both RL and BL accounts with a simple forgetting rule, informally
described as following:

As we know both learning accounts’ response rules at time τ depend
on a history of updates H = {u1, u2, . . . , uτ}, where ui is an update at
time i via an appropriate update rule. An update for RL is specified
by the urn update value, whereby an update for BL is specified by
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changing the values of σ(a|m), σ(t|m), σ(m). This update history H
records the information necessary to undo each update ui. Now we can
define a memory size µ for an agent: If an agent is at time τ , then undo
all updates ui with i < τ − µ. Thus all updates that happened more
than µ time steps ago are cancelled and therefore have no influence on
the response rule. In other words, an agent can’t remember that they
ever happened; i.e. he has forgotten them.

4. Communication in a social structure

Before I go on describing my model I want to introduce some nota-
tion. As agents in my model behave as both sender and as receiver in
each communication step, an agent’s behaviour is characterized by a
pure strategy pair (S,R), which van Rooij (2008) called a language.
Because there are 16 different combinations of pure strategies for a
game with 2 states, 2 messages and 2 actions, there are 16 different
languages. In the left table of Figure 3 you can see all languages for
the standard Lewis game. The languages L1 and L2 are the strict Nash
equilibria and shape what Lewis (1969) called a signaling system. I will
call these languages signaling languages. All the languages Lpi I call
pooling languages because the agent’s sender strategy and/or receiver
strategy is a pooling strategy.5 And the languages Lm1 and Lm2 are
miscommunication languages. We will see that for the DOPL games the
first three of the four strategies of the diagonal of this language table
are of special interest. As you can see in the right table of Figure 3 they
are denoted with LH for Horn language, LaH for anti-Horn language
and LS for Smolensky language.

R1 R2 R3 R4

S1 L1 Lm1 Lp1 Lp2
S2 Lm2 L2 Lp3 Lp4
S3 Lp5 Lp6 Lp7 Lp8
S4 Lp9 Lp10 Lp11 Lp12

RH RaH RS RaS

SH LH Lm1 Lp1 Lp2
SaH Lm2 LaH Lp3 Lp4
SS Lp5 Lp6 LS Lp8
SaS Lp9 Lp10 Lp11 Lp12

Figure 3. Languages as strategy combination an agent can use. Left table: languages
for the standard Lewis game with uniform probabilities and no message costs. Right
table: languages for the predefined DOPL games.

5 A sender’s pooling strategy is one in which the sender chooses the same message
for all states. Accordingly a receiver’s pooling strategy is one in which the receiver
chooses the same interpretation for each message.
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In line with the claim I made at the end of the second section, Zoll-
man (2005) argued for a more realistic framework than the existing RD
accounts where each agent communicates with any other at random.
In contrast to this he analysed signaling games in a multi-agent system
with a spatial structure: the agents have a fixed position on a lattice
and can only communicate with their direct eight neighbours. To avoid
edge phenomena the lattice is mapped on a torus, thus every agent has
exactly eight neighbours. Zollman used the following update dynamics:
in each round every agent acts both as sender and receiver. After a
communication step each agent observes the scores of all his neighbours
and if a neighbour scored better than him the agent switches to the
strategy of the best neighbour. These dynamics can have an interpre-
tation as cultural evolution by imitation, but also as a limited case of
reinforcement learning as Skyrms (2009) pointed out. Thus Zollman’s
model is a step in the right direction, but by integrating RL or BL
in my account I want to simulate a more sophisticated and especially
more protracted learning process than just imitating the best.

Furthermore Zollman didn’t examine signaling games with a DOPL
setting, but the standard Lewis game with uniform probabilities for all
states and no message costs. As you can see in the right table of Figure
2, this game has two equally good Nash equilibria E1 = (S1, R1) and
E2 = (S2, R2), which depicts the signaling languages L1 and L2 in the
left table of Figure 3. Now Zollman’s simulations led to the following
result: Nearly every trial ended up in a population with only signaling
language players. But instead of all agents playing the same language,
the map is distributed in stable regions of L1 and L2 players. Thus this
account leads to the evolution of regional meaning where an agent’s
strategy depends on his location in the society.

Wagner (2009) picked up Zollman’s account and expanded the anal-
yses in different ways, and two of his amendments are of special interest
here. First, Wagner examined cases with non-uniform state proba-
bilities, a situation like in the DOPL settings. Second, he compared
neighbourhood communication with more complex network structures.
He showed that the state probabilities play a role for the stability of
regions and that pooling languages can become stable for particular
settings. Furthermore the stability of a region strongly depends on the
interactions around its frontiers. Corresponding to this result, simu-
lation runs of my system revealed that for particular game settings
frontier structure can be more important for the extinction of languages
than the quality of the strategies.

Whereas a population communicating randomly via Lewisean signal-
ing games learns one global signaling language, Zollmann showed that
neighbourhood communication leads to multiple signaling languages.
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To differentiate both accounts in the way an agent is assigned with a
communication partners, I introduce a measure such that each account
is placed at the extreme points of its scale. To be exact, such a measure
should have the property that for random communication its value is
0, for direct neighbourhood communication it is maximal. I’ll call this
measure the degree of locality. If I define the distance d between two
agents on an n × n toroid lattice as the shortest Manhattan distance,
then the following condition should hold: the higher the degree of lo-
cality, the more probable it is that an agent chooses a communication
partner with a small distance d.

To integrate such a measure in my account, an agent’s decision for
choosing a communication partner will consist of two steps: first he
chooses a distance value d, and second he chooses an agent with distance
d at random. While each agent has 8 direct neighbours and therefore
8 potential communication partners of distance 1, he has 16 poten-
tial communication partners of distance 2, 24 potential communication
partners of distance 3, et cetera. In general each agent has 8×d potential
communication partners of distance d, where 1 ≤ d ≤ dn/2e − 1 for an
n×n toroid lattice. Now assume that the probability to choose distance

d is given by the function Pγ(d) = 8×d/dγ
η , where η is a normalizer6

and γ represents the degree of locality. For example if γ is 0, agents
choose their partners completely randomly, but if γ goes to ∞, the
agents communicate only with their direct neighbourhood.

Figure 4 shows the probability distributions for different γ-values.
As you can see, for γ = 0 the probability of choosing a distance d
increases linearly with the distance, and because the number of agents
with distance d increases linearly with the distance, each possible com-
munication partner is chosen with the same probability independently
of the distance. In other words, this choice behaviour depicts random
communication. For γ = 8 the probability of choosing a communication
partner with distance 1 is P8(1) ≈ 0.992 for a maximal distance of
10. Thus for γ = 8 the probability is almost 1 that agents choose a
direct neighbour as a partner. This choice behaviour therefore is close
to neighbourhood communication and approximates it by increasing γ.

Of interest here is the overall system’s behaviour for different γ-
values. As I already mentioned, the behaviour of choosing a completely
random partner or choosing one in an agent’s direct neighbourhood
are extreme points for the degree of locality. I want to know how the
degree of locality affects the emergence of signaling language(s) in the

6 I set η =
∑dn/2e−1
d=1 8× d/dγ to guarantee that Pγ(d) is a probability measure,

in other words that holds: ∀d ∈ D : 0 ≤ Pγ(d) ≤ 1 and
∑
d∈D Pγ(d) = 1 with

D = {1, 2, . . . dn/2e − 1} ⊆ N
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Figure 4. Degree distributions with a maximal degree of 10 for different γ-values.
γ = 0 depicts random communication. By increasing the γ-value, agents’ behaviour
approximates neighbourhood communication. For γ = 8 the probability to choose a
direct neighbour is ca. 0.992.

multi-agent system; in other words, I want to examine the society’s
behaviour in between those two extreme points.

5. Simulations and results

The agents in my model are placed on an n × n toroid lattice. Com-
municating via signaling games, they act as both sender and receiver
while using the aforementioned response and update rules. A simulation
run consists of consecutively executed communication steps. In one
communication step each agent Zi performs the following substeps:

1. Zi chooses a distance d with probability Pγ(d) and then a random
partner Zj of distance d

2. Zi is assigned with a random state t according to probability Pr(t)

3. Zi sends message m determined by ρs(t,m) to partner Zj

4. Zj construes messagem with interpretation a, determined by ρr(m, a)

5. Zi and Zj observe the result of the communication and update their
respective beliefs or urns

It is possible to compute the agreement between an agent’s current
strategy and a pure strategy and therefore a language Lx via a measure
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known as the Hellinger similarity7. The current strategy of an RL agent
is identical to his urn’s setting, whereas the current strategy of a BL
agent is uniquely defined by his beliefs. I used the Hellinger similarity
to describe how close the current strategy is to one of the 16 languages
depicted in Figure 3. The Hellinger similarity can range between 0 and
1, where 1 is given for identical strategies. If the Hellinger similarity
between the current strategy and one of the languages is above a given
threshold, I declared the agent’s strategy to be close enough to be called
the appropriate language; i.e. I allege that the agent has learned or is
using this language, otherwise I assert that he hasn’t learned a language
yet.8 Further conventions for the simulations are:

− Unless further noted, all simulations are performed with 400 agents
placed on a 20× 20 toroid lattice.

− Without further remarks, the memory size for agents with bounded
memory is 100.

− BL agents start with an empty set of experiences, RL agents start
with 100 balls of each type per urn.

− The experiments include simulations for the Lewis game and for
the two predefined DOPL games. By describing agents’ behaviour
with particular languages, the appropriate names of these lan-
guages are depicted in both tables of Figure 3.

− By saying an agent is playing language Lx or that he is an x-player,
I underscore that the Hellinger similarity of his current strategy
is close enough to the appropriate language x. In the experiments
the Hellinger similarity to the appropriate language must be higher
than the threshold value of 0.8

− In general, simulation runs stopped when every agent learned one
of the languages. Some cases required runs of up to 2,000 steps
before a convention became stable. Longer simulations showed that
simulations beyond 2,000 steps were stable enough so as not to
require further iterations.

Table I gives an overview for the following experiments. There are
four Part A experiments for all four possible combinations of player
type and memory type. In each experiment I measured the influence

7 The Hellinger distance is a standard measure for distances between prob-
ability distributions P and Q over the same set X, defined as H(P,Q) =√

1−
∑
x∈X

√
P (x)×Q(x). Hellinger similarity is defined as 1−H(P,Q).

8 The same way of proceeding was used by Franke & Jäger (to appear).
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16 Roland Mühlenbernd

Table I. Overview for the different experiments

Part A Part B

Experiment 1: BL agents
& unbounded memory

- different γ-
values

- different popultation size

Experiment 2: RL agents
& unbounded memory

- different γ-
values

Experiment 3: RL agents
& bounded memory

- different γ-
values

Experiment 4: BL agents
& bounded memory

- different γ-
values

- different memory size

of the degree of locality γ on the resulting society. Furthermore for BL
agents with unbounded memory I measured the influence of population
size and for BL agents with bounded memory I measured the influence
of memory size.

5.1. The influence of the social structure

In the first experiment 1A, I examined the influence of the degree of
locality γ for BL agents with unbounded memory. First, I let them
play the standard Lewis game to see how γ influences the emergence of
multiple equilibria by starting simulations with different γ-values. The
basic result is that each simulation run ended up either in a society
where every agent learned the same signaling language or where the
lattice is split into local signaling languages of both types. The runs
resulting in the split societies produced regions separated by borders
of players using no language, as depicted in the left picture of Figure 5.
The phenomenon of such border players is a consequence of the fact that
both signaling languages are highly incompatible.9 Thus border players
never learn a language, but rather switch between different strate-
gies, torn between both signaling languages. Nevertheless, whenever
one unique society-wide signaling language emerged, all agents learned
it, and whenever multiple local signaling languages emerged, only the
border players failed to learn one of them. These basic results spurred
the examination of how the degree of locality impacts the probability
of multiple local signaling languages emerging.

9 As comprehensible by taking a look at Figure 2, the expected utility of a com-
bination of opposed signaling strategies is 0 for the Lewis game ((S1, R2), (S2, R1))
and negative for a DOPL game ((SH , RaH), (SaH , RH)).
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For different γ-values between 0 and 9.5 Figure 6 shows the per-
centage of 25 trials producing a society with multiple local signaling
languages. The results indicate that the probability for the emergence
of multiple languages depends on the degree of locality γ. Remember,
with γ = 0 we have random communication and expect only one global
signaling language L1 or L2 to emerge, whereas for a high γ-value
we’re close to neighbourhood communication and expect multiple local
signaling languages L1 and L2 to emerge. The result for the Lewis game
in Figure 6 shows that for γ < 2, every trial resulted in a society with
only one global signaling language, but for γ ≥ 3, every trial led to
a society with both signaling languages. In the range 2 ≤ γ < 3, the
percentage of trials ending with two signaling languages increased with
γ. All in all, these trials show that the probability of multiple signaling
languages emerging increases with respect to the degree of locality γ.

I used the same procedure for the weak DOPL game. The basic take-
away was that either the whole society learned the Horn language as
a unique convention or that the society split into Horn and anti-Horn
players, again divided by border players. As you can see in Figure 6,
for γ ≤ 3 all of the trials eventuated with only Horn players, whereas
for γ ≥ 4 the percentage of trials that ended with a society of both
Horn and anti-Horn players was around 80%. In the range 3 < γ < 4,
the percentage of trials that rendered a society with anti-Horn players
as well increased with the γ-value. For each trial resulting in a society
with both Horn and anti-Horn players, the number of anti-Horn players
was always small, on average around 30 players. An exemplary pattern
of such a final society is depicted in the right picture of Figure 5.

L1 L2 other Horn Anti-Horn other

Figure 5. Exemplary distribution of players with different strategies. Left picture:
Result of a Lewis game. Right picture: Result of a weak DOPL game.
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Figure 6. The percentage of trials resulting in a society with multiple signaling
languages. For the Lewis game, every trial culminated with both signaling languages
if γ ≥ 3. For the weak DOPL game, about 80% of the trials produced both Horn
and anti-Horn players if γ ≥ 4. And for the strong DOPL game less than 20% of
the trials resulted with both Horn and anti-Horn players.

Finally, I used the same procedure for the strong DOPL game. As
you can see the higher difference of the probabilities Pr(tp) and Pr(tr)
had a deep impact on the emergence of anti-Horn players. Here there
was no emergence of anti-Horn players for γ < 4. Even for γ ≥ 4 the
percentage of trials that finished with both Horn and anti-Horn players
was only around 10%; furthermore, the average size of those local anti-
Horn player groups was around 10 players. For the strong DOPL game,
the emergence of anti-Horn players was highly improbable, and if they
did arise, the group was minuscule.

Important to note is that the degree of locality γ was not the only
factor influencing the probability that societies resulting in Horn and
anti-Horn players would emerge. The overall number of agents also
influenced this probability. The left picture of Figure 7 shows an evo-
lution course of 200 steps of a trial for the strong DOPL game where
no stable group of anti-Horn players emerged in the end. Observe that
at the beginning of the trial such a group emerged but was driven to
early extinction because it was not large enough.

For lattices with a higher number of agents, the probability is ob-
viously higher that emerging groups of anti-Horn players are large
enough to survive, flourish, and stabilize. To examine this fact I started
experiment 1B, which simulated different lattices sizes of 5×5, 10×10,
15 × 15, 20 × 20, 25 × 25 and 30 × 30 agents over 15 trials in each
case (fixed γ = 9). I then compared the probabilities of societies where
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anti-Horn players would emerge. As you can see in the right picture of
Figure 7 for the weak DOPL game, the following holds: the probability
of anti-Horn players emerging increases with the number of agents. For
the strong DOPL game with n ≤ 15, anti-Horn players do not emerge.
This only occurs in around 10% of all trials if n ≥ 20. While this result is
still tentative, further investigation should give a more detailed analysis
of these dependencies. Nevertheless, we see that the probability that
stable groups of anti-Horn players emerge generally increases with the
number of agents.

Now let’s wrap up the results of experiment 1. For a multi-agent
system with BL agents playing a DOPL game, the following holds:
the higher the degree of locality γ and/or the higher the number of
agents on the map, the higher the probability of the emergence of
stable groups of anti-Horn players. Regardless of this, however, this
probability is still very low in the strong DOPL game. As you can
imagine, changing the game settings to still stronger values (higher
distance of probability values and/or higher difference of message costs)
will force the probability of those groups emerging to zero. Now let’s
take a look at how the degree of locality influences another species of
agents, the much more unsophisticated RL agents.

In experiment 2, I used the same settings as in experiment 1A, but
replaced BL agents by RL agents. A basic result is that the societies
of RL agents are less uniform than those of BL agents. As evident
in the line of experiment 1, BL agents have a strong drive for using
exactly one signaling language for partners with whom they frequently
communicate. Ergo, the resulting society always either uses one unique
signaling language or the whole lattice is split into groups of both
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Figure 7. Left picture: A data plot for a strong DOPL game on a 20 × 20 lattice.
Anti-Horn players emerge temporary but are driven to extinction because their
group is too small. Right picture: Statistics for different lattice sizes with γ = 9.0.
The emergence of stable groups of anti-Horn players also depends on the overall
number of agents. By increasing n for n× n lattices, the percentage of trials ending
up with anti-Horn players emerging also increases in the weak DOPL game.
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signaling languages, where only agents on the borders of those groups
cannot stabilize. Of such agents, we could say that they fell between the
cracks. As we will see in my final conclusion this drive is a result of their
high flexibility. In contrast the RL agents are much more inert after an
initial phase, as they zero in on a language that is not necessarily a
signaling language.

The results for RL agents playing the Lewis game contrasts to the
BL agents’ results in the following way: first, agents learned both sig-
naling languages L1 and L2 in each trial independently of the γ-value.
Second, only a fraction of the agents learned signaling languages. The
left picture of Figure 8 shows a resulting pattern for 400 RL agents
with γ = 7.0. Here the degree of locality γ has no influence of the fact
that only one or both signaling languages emerge, but it does influence
the number of agents who learn a signaling language. The right picture
of Figure 8 shows the number of agents (averaged over 15 trials) who
learned a signaling or a pooling language. As you can see for 0 ≤ γ ≤ 4,
the number of agents who learned a signaling language increases with
the γ-value and for γ > 4 the number levels off at around 180 signaling
players. In fact, signaling players stabilize in groups, and the higher
the degree of locality γ, the stronger those groups grow. But because
the RL agents become more inert as the simulation runs longer, the
growing eventually stops, and most of the agents stabilize at a learned
pooling language or have learned no language at all. Even for a high
γ-value less than half of the agents learned a signaling language.

L1 L2 other
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Figure 8. Left picture: Exemplary stable distribution of RL players learned a sig-
naling language L1, L2 or none of them on a 20 × 20 toroid lattice playing the
Lewis game with γ = 7.0. Right picture: The average number of signaling or pooling
language players over 15 trials each for different γ-values.

Now let’s take a look at the results for RL agents playing a DOPL
game. The resulting society of agents playing the weak DOPL game
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simulated for different γ-values is depicted in the left picture of Figure
9. Each data point represents the average number over 15 trials of
language player types for an appropriate γ-value. For 0 ≤ γ < 2 around
150 pooling players, 50 Horn players, 50 Smolensky players and only
a few anti-Horn players emerged. For higher γ-values, those numbers
increased. For γ > 3, stable groups of around 190 pooling players,
100 Horn players, 40 anti-Horn players emerged. Thus the number of
Smolensky players stays at 50 players independently of the γ-value,
whereas γ influences the number of learners of the other languages.
By taking a look at the overall number of agents who learned one of
the target languages of Table 3, we see that for 0 ≤ γ ≤ 2.5 around
310 agents learned a target language whereas for γ > 2.5 around 380
agents learned one of them. But in each case the number of Horn and
anti-Horn players in sum accounts for less than half of all agents.

Finally, the results for RL agents playing the strong DOPL game
are depicted in the right picture of Figure 9. As you can see for γ ≤ 2
no agent learned any target language. With increasing the γ-value, the
number of Horn, anti-Horn, Smolensky and pooling players increased.
For γ ≥ 2, the number of Horn players stabilized around 40, anti-Horn
less than 5, and Smolensky around 10. For γ ≥ 5 the number of pooling
players stabilized around 125. By summing this up, the overall number
of agents that learned a target language is less than half of all agents
even for high γ-values. Further, the emergence of anti-Horn players is
probable, but those groups are minute.
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Figure 9. The average number of different player types over 10 trials each for differ-
ent γ-values. Left picture: The result for the weak DOPL game. Right picture: The
result for the strong DOPL game.

All in all, the difference between BL and RL agents is the following:
RL agents don’t all learn a signaling language; in fact they don’t all
learn any of the predefined languages. But nevertheless by increasing
the γ-value, both the number of agents who learned any language and
the number of agents who learned a signaling language increased. It is
important to recognize that because of being less dynamic, even for high
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γ-values, less then half of all RL agents learned a signaling language for
the Lewis and weak DOPL game, and even less then 50 for the strong
DOPL game. In contrast, except for the agents on the border between
two signaling regions, all BL agents learned a signaling language. Here
the γ-value influences the probability of the emergence of only one or
both signaling languages. Ergo with respect to the DOPL game, the
γ-value influences the probability for anti-Horn players to emerge. In
the next subsection, we examine how a limited memory size changes
the resulting structures.

5.2. The influence of bounded memory

In experiment 3, I examined the influence of bounded memory on the
behaviour of RL agents. I started simulations for agents with a memory
size of 100 for different γ-values. The overall result is that the bounded
memory makes the agents less inert. The left picture of Figure 10 shows
the results. Each data point displays the percentage of both signaling
languages emerging for the Lewis game, the weak DOPL game, and the
strong DOPL game. This result is comparable, not to say conspicuously
similar to the result of experiment 1 for BL agents with unbounded
memory. As you can see for the Lewis game for γ < 2 the whole society
learned one of both signaling languages. For 2 ≤ γ < 3 the probability
for the emergence of both signaling languages increased, and for γ ≥ 3
the society split into stable groups of players who learned both signaling
languages, with agents on the border learning no language.
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Figure 10. Left picture: The percentage of 15 trials ending up in a stable state with
multiple signaling languages for RL agents with a bounded memory of 100. For
high γ-values agents learn both signaling languages for the Lewis game, the weak
and the strong DOPL game as well. Right picture: An exemplary distribution of
different language players for a weak DOPL game and γ = 7.0. The whole society
is distributed in Horn and anti-Horn players with boarder players in between.
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For the weak DOPL game, γ < 2.5 induced all agents learning the
Horn language, for 2.5 ≤ γ ≤ 4 the probability of the emergence of
stable groups of anti-Horn players increases with the γ-value, and for
γ > 4 the society is split in Horn players and a smaller group of anti-
Horn players, both separated by a border of agents that learned no
language. For the strong DOPL game with γ < 4, all agents learned
the Horn language, and for 4 ≤ γ < 7 the probability for the emergence
of anti-Horn players increases with γ. For γ ≥ 7 the probability for the
emergence of stable groups of anti-Horn players levelled off around 70%.

These results show that by increasing the γ-value the probability
for the emergence of multiple signaling languages increases. The right
picture of Figure 10 shows a exemplary distribution of agents playing
the weak DOPL game with a memory of 100 for γ = 7.0. This picture
also looks remarkably similar to the resulting pattern of BL agents:
every agent learned a signaling language, Horn or anti-Horn, and only
the agents on the border learned no signaling language. This result
leads me to the following proposition:

The systemic behaviour of RL agents with bounded memory is simi-
lar to the systemic behaviour of BL agents with unbounded memory.

In experiment 4A I examined BL agents with bounded memory. With
this setting each trial resulted in a society with only one signaling
language independent of the γ-value. In the DOPL games all agents
learned the Horn language at the end of a simulation run. But by taking
a closer look at the simulation runs you can see that in a lot of trials
substantial islands of anti-Horn players emerged during a simulation
run. The left picture of Figure 11 shows an example for such a trial
with BR agents with a bounded memory of size 400 for γ = 5.0. Here
a group of more than 60 anti-Horn players emerged and even if it takes
more then 2000 steps, this group was driven to extinction.

The same happened in case of the Lewis game. During a trial, islands
of both signaling languages emerged. One of both language groups
constituted i) the majority within the trial and ii) the one and only
signaling language at the end of the trial after the language group
constituting the minority was driven to extinction. Thus the systemic
behaviour of BL agents with bounded memory is different to that of BL
agents with unbounded memory, for whom islands of minorities stay
stable, if they are big enough. BL agents with bounded memory always
end up in a society with one unique signaling language.

In experiment 4B, I wanted to determine the influence of BL agents’
memory size on the number of simulation steps required until a signal-
ing language has captured the whole society. Thus I started simulations
with BL agents with a memory size of 50, 100, 200 and 400 for the weak
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Figure 11. Left picture: A data plot for a strong DOPL game. Anti-Horn players
emerge temporary and in a large group but are driven to extinction by surrounding
Horn players. Right picture: The average runtime over 10 trials for a society-wide
signaling language (here: Horn language) to emerge; for different memory sizes with
γ = 5.0. Result: the smaller the memory size, the shorter the runtime.

and the strong DOPL game and measured the average runtime over ten
trials each. As you can see in the right picture of Figure 11, the runtime
for the whole society to learn the unique signaling language increases
linearly with the memory size.

Finally Table II pictures a summary of all experiments’ results.

Table II. Summary: Results of the different experiments

Part A Part B

Exp. 1: BL agents &
unbounded memory

- all agents learn a signaling
language (exc. on borders)

- all agents learn a signal-
ing language

- increasing γ → probability
for multiple signaling lan-
guages increases

- increasing population
size → probability for
multiple signaling lan-
guages increases

Exp. 2: RL agents &
unbounded memory

- less than half of all agents
learn a signaling language

- increasing γ → number of
signaling players increases

Exp. 3: RL agents &
bounded memory

- all agents learn a signaling
language (exc. on borders)

- increasing γ → probability
for multiple signaling lan-
guages increases

Exp. 4: BL agents &
bounded memory

- all agents learn the same
unique signaling language
(LH in a DOPL game)

- increasing memory size
→ trials’ runtime in-
creases

article.tex; 23/08/2011; 20:30; p.24



Learning with neighbours 25

6. Conclusion

The Part A experiments compared four different types of agents, arising
out of the combinations of learning dynamics (RL and BL) and memory
settings (unbounded and bounded). By comparing these results I am
inclined to introduce a property that signifies the distinction of the
systemic behaviour of each agent type. I call this property flexibility.
The simulation results suggest a classification of three different levels
of flexibility. Level 0 is extremely inert behaviour like those of RL
agents with unbounded memory: most of the agents learn no signaling
language because their behaviour is not flexible enough for a successful
language to spread society-wide. Level 1 is much more flexible. Here one
global signaling language or local groups of signaling languages emerge
and stay stable, where only the border players between local groups
fail to learn a language. This behaviour is observable for BL agents
with unbounded memory as well as RL agents with bounded memory.
Level 2 is the most flexible case, so that convex regions cannot stay
stable and are driven to extinction. That means that in general only
one global signaling language will emerge for the whole society. This
holds for BL agents with bounded memory. Table III depicts the three
different levels of flexibility.

Table III. Three different levels of flexibility

Agent type Resulting society

Flexibility
Level 0

- RL & unbounded memory No emergence of society-wide sig-
naling language(s)

Flexibility
Level 1

- RL & bounded memory
- BL & unbounded memory

Local communication: emergence
of several local signaling languages
Global communication: emergence
of one society-wide unique and ef-
ficient signaling language

Flexibility
Level 2

- BL & bounded memory emergence of one society-wide
unique and efficient signaling
language

It was also shown in experiment 4B that, with respect to a lower
limit, the shorter the memory size, the more flexible the agents and
the faster a stable state emerged. This result covers the previous re-
sults, that agents with unbounded memory are much less flexible. The
three general conclusions drawn from the simulation results are the
following:
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1. BL agents are in general much more flexible than RL agents.

2. The degree of locality γ influences the agents’ behaviour in the
following way: the higher the γ-value, the stronger the tendency
for agents to form local signaling languages.

3. The memory size influences the agents behaviour in the following
way: the shorter the memory, the more flexible the behaviour of
the agents.

Thus we can answer the first question: What circumstances could be
responsible for an evolutionary process that doesn’t lead to the expected
DOPL convention? The answer is that a local communication structure
(high γ-value) and a flexibility level < 2 leads to resulting structures
including more than the expected Horn players. To which extend is
rationality necessary for the emergence of a society-wide convention
à la DOPL? The results showed that rationality plays a role in that
sense that it influences flexibility. They also reveal that the higher the
rationality, the higher the flexibility, all else being equal. But agent
flexibility can also be influenced by interior conditions like memory size
or by external circumstances like the degree of locality. Thus rationality
is not the bottom line factor for such an emergence: e.g. for the more
rational BL agents there is no emergence of one unique signaling lan-
guage if their memory is unbounded and the communication structure
is local, whereas for the less rational RL agents such a unique one would
emerge, if their memory is bounded and the communication structure
is global.
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