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1. Introduction

Prototypical human and artificial societies (e.g., a community, an organization) are populated by agents
who have repeated encounters and can decide either to collaborate with the others thereby acting cooper-
atively, or to exploit the work of the others thereby acting selfishly. In a game-theoretic setting this kind
of situations can be represented as an iterated Prisoner’s Dilemma (PD) in which agents in the population
have repeated one-to-one interactions with others (i.e., at each round two agents in the population meet
and play one-shot PD). The aim of this work is to study how fairness norms tend to emerge in this kind of
societies in which agents are assumed (i) to be rational in the sense of being expected utility maximizers,
and (ii) to learn from their past experiences. In the paper, we focus on a special kind of fairness norm à
la Rawls [1] according to which a fair society should be organized so as to admit economic inequalities
to the extent that they are beneficial to the less advantaged agents.

Our analysis is based on the general assumption that agents in the society are heterogeneous in the
sense of being more or less sensitive to the fairness norm, where an agent’s degree of norm sensitiv-
ity captures the extent to which the fairness norm has been internalized by the agent. The idea is that
if a given norm is internalized by an agent then there is no need for an external sanction, a reward or
punishment to ensure norm compliance. The agent is willing to comply with the norm because, if she
does not do this, she will feel (morally) bad. We study the conditions under which an agent’s disposition
to follow the fairness norm à la Rawls (i.e., the agent’s sensitivity to the fairness norm) increases the
agent’s individual benefit in the long term. In other words, we aim at providing an utilitarian explanation
of the internalization of the fairness norm à la Rawls, that is to say, we aim at explaining why rational
agents with learning capabilities should become motivated to follow this fairness norm even without
external enforcement (e.g., external sanctions, punishment). Subsequently, we apply tools from evolu-
tionary game theory (EGT) to study the conditions for which dispositions to follow the fairness norm
à la Rawls can evolve in a population of agents lacking such dispositions at all. From an evolutionary
perspective, an agent’s degree of norm sensitivity should be conceived as the agent’s morality level: the
higher the agent’s degree of sensitivity to the norm of fairness, the more the agent is disposed to sacrifice
her well-being for the well-being of the others.

Norm internalization is a concept that has been widely discussed in the literature in social sciences
[2, 3, 4]. As emphasized by Aronfreed [2, page 18], “...internalization occurs when a norm’s mainte-
nance has become independent of external outcomes, that is, to the extent that its reinforcing conse-
quences are internally mediated, without the support of external events such as rewards or punishment”.
More recently, it has received interest from researchers in the field of multi-agent systems. For instance,
Andrighetto et al. [5, 6] provide a simulation study of norm internalization that is able to account for
experimental evidence showing that subjects playing PD or ultimatum games follow fairness consider-
ation even without external enforcement [7]. They focus on the repeated PD with punishment played
by a heterogenous population including three typologies of agents: strategic agents, normative agents
and internalizers. Strategic agents are implemented as Q-learning agents. They are not aware about the
existence of the norms and always choose the action that has provided them the maximum benefit in
the past. Normative agents follow the norm of cooperation in order to avoid the punishment in case of
violation. Finally, internalizer agents internalize the norm of cooperation when it has become sufficiently
salient for them, where salience increases as a result of punishment.1 Once the norm of cooperation is

1The authors distinguish two types of punishment both yielding a cost to the punisher: strategic and normative punishment. The
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internalized, they follow it as an automatism, without any benefit-cost calculation. Before internalizing
it, they behave as normative agents. Differently from our study, Andrighetto et al. do not provide any for-
mal model or analytical study, as their approach is purely simulative. It is aimed at verifying hypotheses
such as existence of a positive correlation between proportion of internalizers in the population (relative
to strategic and normative agents) and cooperation rate, and between proportion of internalizers in the
population and punishment rate. Moreover, differently from our study, Andrighetto et al. do not consider
fairness norms and the conditions under which such norms emerge either through learning or through
evolution.

Although the present work focuses on fairness norms à la Rawls and on the specific case of the re-
peated PD, it positions itself in the research area on the evolution of morality that has received increasing
attention in the recent years [8, 9]. For example, Rand et al. [9] have recently provided an evolutionary
explanation of why human agents are driven by fairness concerns in the one-shot anonymous ultimatum
game. Their explanation is alternative to existing explanations based on the concept of reputation (see,
e.g., [10, 11]) according to which fairness can be favored by natural selection if agents can recognize
their partners’ strategies or have reputations that carry from game to game. Rand et al.’s use stochas-
tic evolutionary game theory to show that, if agents can make mistakes when judging the payoffs and
strategies of others, then fairness can evolve.2 The main difference between our approach and Rand et
al.’s is that they model evolution of agents’ strategies whereas we model evolution of agent’s degrees of
sensitivity to fairness norm or, more generally, evolution of agents’ strengths of morality. This difference
has important implications both at the conceptual level and at the technical level. In our evolutionary
model every agent in the population is identified with a degree of sensitivity to the fairness norm and
this is what passes down from generation to generation. In Rand et al.’s model every agent is identified
with a strategy formalized by two parameters p, q ∈ [0, 1], where p is the amount offered when acting as
proposer in the ultimatum game and q is the minimum amount demanded when acting as responder. The
idea of considering evolution of strengths of morality is something our model shares with some recent
models of the evolution of morality in economics [12, 13].

Plan of the paper The rest of the paper is organized as follows. In Section 2 we present a game-
theoretic model of guilt aversion which provides the static foundation of our analysis. The main idea of
the model is that agents in a game are motivated both by their personal utilities and by the goal of avoiding
guilt feeling. It is assumed that guilt feeling is triggered in case of the violation of an internalized norm.
Specifically, the intensity of guilt feeling is proportional to the agent’s sensitivity to the norm. In Section
3, we provide a dynamic extension of our model in order to formally specify repeated interactions and
learning in a game-theoretic setting. The learning approach is the well-known fictitious play [14]. Section
4 provides some mathematical results about convergence for fictitious play in the case of iterated PD in
which agents are assumed to be more or less sensitive to the fairness norm à la Rawls. Our mathematical
analysis of convergence for fictitious play is partial, as it only covers a subset of the set of possible values
of norm sensitivity for the agents in the population. Thus, in Section 5, we present some computational
results about convergence for fictitious play which complement the analysis of Section 4. In Section 6,
we present some experimental results in the case of iterated PD which highlight the relationship between

former only has a deterrent effect, while the latter has the additional effect of making explicit the norm existence and increasing
its salience (it is accompanied with a deontic message).
2In their model of stochastic evolution, they introduce a parameter called the “intensity of selection”. The idea is that the higher
the value of this parameter, the more likely agents with higher payoffs are going to be reproduced (or imitated).
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an agent’s degree of sensitivity to the fairness norm à la Rawls and her individual benefit in the long
term.

In Sections 7 and 8 we combine the learning approach with an evolutionary approach. We use tools
from evolutionary game theory to analyze evolutionary aspects of sensitivity to the fairness norm à la
Rawls in the Prisoner’s Dilemma under population dynamics. The novel aspect of our analysis compared
to existing analysis (cf. [15]) is that we focus on the evolution of different degrees of sensitivity to the
fairness norm, while existing analysis focus on the evolution of pure or mixed strategies in the Prisoner’s
Dilemma, namely cooperation, defection, or any combination of the two. In other words, we are inter-
ested in identifying those degrees of fairness norm sensitivity that have a greater potential to survive (in
EGT this potential can be formalized as evolutionary stability3 [16]) under population dynamics, such
as the well-known replicator dynamics [17]. To this aim, we first present in Section 7 an abstract con-
cept of meta-game, which entails the accumulated reward of repeated interaction under fictitious play,
and in which strategies correspond to the different degrees of sensitivity to the fairness norm an agent
might have. Then, in Section 8 we present some computational results i) showing that cooperativeness
and dispositions following the fairness norm à la Rawls can coevolve in a population of initially solely
defectors under the replicator dynamics with mutation, and ii) indicating such a disposition to be evolu-
tionary stable under the replicator dynamics. As a side note, we would like to remark that a preliminary
version of this work has appeared [18], which does not contain any analysis of the evolutionary aspects
of sensitivity to the fairness norm.

Motivating example The present work is mainly theoretical but, we believe, it can offer interesting
insights for people working in the area of multi-agent systems (MAS) in which agents are supposed
to be artificial entities such as a large team of robotic agents or a population of autonomous agents
with learning capabilities, making decisions on the basis of expected utility maximization and having
repeated encounters. One might wonder whether a fairness norm imposed by an external designer in
order to promote cooperation will be followed by the agents even without external enforcement, as by
following it an agent will get a benefit in the long run. By way of example, consider a future society with
vehicles controlled by autonomous agents. These vehicles face different types of social dilemmas during
their life cycles (see, e.g., [19], for a recent study of social dilemmas for autonomous vehicles). Some
of these social dilemmas can be represented as repeated Prisoner’s Dilemmas. For instance, suppose the
owners of two autonomous vehicles, call them Ann and Bob, have to share a limited common space in
the parking area in front of the hotel in which they both spend their summer holidays. Suppose also that
in the late morning Bob regularly goes back to the hotel before Ann at around 12:00 am, while in the
evening Ann regularly goes back to the hotel before Bob at around 6:30 pm. Each autonomous vehicle
can decide to be either cooperative or non-cooperative. The cooperative option (C) consists in parking
in the common space by taking care of leaving space available for the other vehicle, in case the other
has not parked yet. The non-cooperative option (N) consists in parking in the common space without
taking care of leaving space available for the other vehicle. The time cost of action N is significantly
lower than the time cost of action C. Indeed, action C requires a careful maneuver by the vehicle and a
considerable amount of time. In this sense, each vehicle has an incentive to play N. Nonetheless, if both
vehicles choose option N, then this will be detrimental to both of them. Indeed, if both vehicles choose

3An evolutionary stable strategy (ESS) is a central concept in evolutionary game theory. An ESS has very insightful features,
such as an invasion barrier against mutation/invasion as well as a close relation to the concept of a Nash equilibrium. For a
formal definiton we refer to [16].
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N, then Bob will be able to park his vehicle late in the morning but he will be unable to do it in the
evening and, vice versa, Ann will be able to park her vehicle in the evening but she will be unable to do
it late in the morning. Furthermore, the situation in which both vehicles choose option C is satisfactory
for Bob and Ann, as they will be able to park their vehicles both late in the morning and in the evening.
Finally, the situation in which one vehicle chooses C while the other chooses N is clearly the worst for
the former and the best for the latter. In fact, by choosing C while the other chooses N, a vehicle will
spend a considerable amount of time for properly parking but will not have space available for parking
both late in the morning and in the evening. On the contrary, by choosing N while the other chooses C, a
vehicle will spend a small amount of time for parking and will have space available for parking both late
in the morning and in the evening.

This concrete scenario raises a number of general issues that the present paper aims to clarify. Sup-
pose that Bob and Ann’s autonomous vehicles are controlled by rational agents with learning capabilities.
Under these assumptions, will the autonomous vehicles converge to the cooperative option in the long
run after repeated encounters? If so, does this depend on the agents’ sensitivities to the fairness norm?
Note that the example can be seen as a finite repeated Prisoner’s Dilemma game which lasts for the lim-
ited period of Bob and Ann’s holidays. This excludes that the incentive to defect may evaporate because
of the “shadow of the future” [30] and justifies the use of a fairness norm for promoting cooperation.

2. Game-theoretic model of guilt aversion

In this section, we present our game-theoretic model of guilt and of its influence on strategic decision
making. We assume that guilt feeling originates from the agent’s violation of a certain norm. Specifically,
the intensity of an agent’s guilt feeling depends on two parameters: (i) how much the agent is responsible
for the violation of the norm, and (ii) how much the agent is sensitive to the norm. As emphasized in
the introduction, in our model the agent’s sensitivity to the norm captures the extent to which the norm
is internalized by the agent.

Our model assumes that an agent has two different motivational systems: an endogenous motiva-
tional system determined by the agent’s desires and an exogenous motivational system determined by
the agent’s internalized norms. Internalized norms make the agent capable of discerning what from his
point of view is good (or right) from what is bad (or wrong). If an agent has internalized a certain
norm, then she thinks that its realization ought to be promoted because it is good in itself. A similar
distinction has also been made by philosophers and by social scientists. For instance, Searle [20] has
recently proposed a theory of how an agent may want something without desiring it and on the problem
of reasons for acting based on moral values and independent from desires. In his theory of morality [21],
Harsanyi distinguishes a person’s ethical preferences from her personal preferences and argues that a
moral choice is a choice that is based on ethical preferences. A more recent account of ethical prefer-
ences in economics is given by Brekke et al. [22]. According to this study, a person can be intrinsically
motivated to maintain a positive self-image of being morally responsible. Moral responsibility is defined
as the difference between one’s actual effort and the morally ideal effort, where the morally ideal effort
is identified with the action that maximizes social welfare, given that everyone acts in the same way.4

4According to Brekke et al. [22] this corresponds to a simple version of Immanuel Kant’s Categorical Imperative.
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2.1. Normative game and guilt-dependent utility

Let us first introduce the standard notion of normal-form game.

Definition 2.1. (Normal-form game)
A normal-form game is a tuple G = (N , (Si)i∈N ,U) where:

• N = {1, . . . , n} is a finite set of agents or players;

• for every i ∈ N , Si is agent i’s finite set of strategies;

• U : N −→ (
∏
i∈N Si −→ R) is an utility function, with U(i) being agent i’s personal utility

function mapping every strategy profile to a real number (i.e., the personal utility of the strategy
profile for agent i).

For every i ∈ N , elements of Si are denoted by si, s
′
i, . . . Let 2Agt∗ = 2N \ {∅} be the set of all

non-empty sets of agents (alias coalitions). For notational convenience we write −i instead of N \ {i}.
For every J ∈ 2Agt∗, we define the set of strategies for the coalition J to be SJ =

∏
i∈J Si. Elements

of SJ are denoted by sJ , s
′
J , . . . We write S instead of SN and we denote elements of S by s, s ′, . . .

Every strategy sJ of coalition J can be seen as a tuple (si)i∈J where agent i chooses the individual
strategy si ∈ Si. For notational convenience we write Ui(s) instead of U(i)(s). As usual a mixed
strategy for agent i is a probability distribution over Si. Agent i’s set of mixed strategies is denoted
by Σi and elements of Σi are denoted by σi, σ′i, . . . The set of mixed strategy profiles is defined to be
Σ = Σ1 × . . . × Σn and its elements are denoted by σ, σ′, . . . The utility function Ui reflects agent i’s
endogenous motivational system, i.e., agent i’s desires.

C D

C R,R S, T

D T, S P, P

Figure 1. Prisoner’s dilemma (with player 1 being the row player and player 2 being the column player).

A well-known example of normal-form game is the Prisoner’s Dilemma (PD) in which two agents
face a social dilemma. The PD is represented in Figure 1.

Each agent in the game can decide either to cooperate (action C) or to defect (action D) and has
an incentive to defect. Indeed, it is assumed that, if an agent defects, she gets a reward that is higher
than the reward obtained in the case of cooperation, no matter what the other agent decides to do. In
other words, cooperation is strongly dominated by defection. The social dilemma lies in the fact that
mutual defection, the only Nash equilibrium of the game, ensures a payoff for each agent that is lower
than the payoff obtained in the case of mutual cooperation. The Prisoner’s Dilemma can be compactly
represented as follows.

Definition 2.2. (Prisoner’s Dilemma)
A Prisoner’s Dilemma (PD) is a normal-form game G = (N , (Si)i∈N ,U) such that:

• N = {1, 2};
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• for all i ∈ N , Si = {C,D};

• U1(C,C) = R, U1(D,D) = P , U1(C,D) = S and U1(D,C) = T ;

• U2(C,C) = R, U2(D,D) = P , U2(C,D) = T and U2(D,C) = S;

and which satisfies the following two conditions:

(C1) T > R > P > S,

(C2) S = 0.

Condition (C1) is the typical one in the definition of the Prisoner’s Dilemma. Condition (C2) is an
extra normality constraint which is not necessarily assumed in the definition of PD. It is assumed here to
simplify the analysis of the evolution of fairness norms.

The following definition extends the definition of normal-form game with a normative component.
Specifically, we assume that every outcome in a game is also evaluated with respect to its ideality degree,
i.e., how much an outcome in the game conforms to a certain norm. Moreover, as pointed above, we
assume that an agent in the game can be more or less sensitive to the norm, depending on how much the
norm is internalized by her.

Definition 2.3. (Normative game)
A normative game is a tuple NG = (N , (Si)i∈N ,U, I, κ) where:

• (N , (Si)i∈N ,U) is a normal-form game;

• I :
∏
i∈N Si −→ R is a function mapping every strategy profile in S to a real number measuring

the degree of ideality of the strategy profile;

• κ : N −→ R≥0 is a function mapping every agent in N to a non-negative real number measuring
the agent’s sensitivity to the norm.

For notational convenience we write κi instead of κ(i) to denote agent i’s sensitivity to the norm.
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Following current psychological theories of guilt [23], we conceive guilt as the emotion which arises
from an agent’s self-attribution of responsibility for the violation of an internalized norm (i.e., a norm to
which the agent is sensitive). Specifically, intensity of guilt feeling is defined as the difference between
the ideality of the best alternative state that could have been achieved had the agent chosen a different
action and the ideality of the current state, — capturing the agent’s degree of responsibility for the viola-
tion of the norm —, weighted by the agent’s sensitivity to the norm. The general idea of our model is that
the intensity of guilt feeling is a monotonically increasing function of the agent’s degree of responsibility
for norm violation and the agent’s sensitivity to the norm.

Definition 2.4. (Guilt)
Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game. Then, the guilt agent i will experience after the
strategy profile s is played, denoted by Guilt(i,s), is defined as follows:

Guilt(i,s) = κi × (max
s′i∈Si

I
(
s ′i, s−i)− I(s))

The following definition describes how an agent’s utility function is transformed depending on the
agent’s feeling of guilt. In particular, the higher the intensity of guilt agent i will experience after the
strategy profile s is played, the lower the (transformed) utility of the strategy profile s for agent i. Note
indeed that the value Guilt(i,s) is either positive or equal to 0. Guilt-dependent utility reflects both agent
i’s desires and agent i’s moral considerations determined by her sensitivity to the norm.

Definition 2.5. (Guilt-dependent utility)
Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game. Then, the guilt-dependent utility of the strategy
profile s for agent i is defined as follows:

U ∗i (s) = Ui(s)−Guilt(i,s)

It is worth noting that the previous definition of guilt-dependent utility is similar to the definition of
regret-dependent utility proposed in regret theory [24]. Specifically, similarly to Loomes & Sugden’s
regret theory, we assume that the utility of a certain outcome for an agent should be transformed by
incorporating the emotion that the agent will experience if the outcome occurs.

2.2. Fairness norms

In the preceding definition of normative game an agent i’s utility function Ui and ideality function I are
taken as independent. There are different ways of linking the two notions.

For instance, Harsanyi’s theory of morality provides support for an utilitarian interpretation of fair-
ness norms which allows us to reduce an agent i’s ideality function I to the utility functions of all agents
[21]. Specifically, according to the Harsanyi’s view, a fairness norm coincides with the goal of maximiz-
ing the collective utility represented by the weighted sum of the individual utilities.

Definition 2.6. (Normative game with fairness norm à la Harsanyi)
A normative game with fairness norm à la Harsanyi is a normative game NG = (N , (Si)i∈N ,U, I, κ)
such that for all s ∈ S:

I(s) =
∑
i∈N

Ui(s)
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An alternative to Harsanyi’s utilitarian view of fairness norms is Rawls’ view [1]. In response to
Harsanyi, Rawls proposed the maximin criterion of making the least happy agent as happy as possible:
for all alternatives s and s ′, if the level of well-being in the worst-off position is strictly higher in s than
in s ′, then s is better than s ′. According to this well-known criterion of distributive justice, a fair society
should be organized so as to admit economic inequalities to the extent that they are beneficial to the less
advantaged agents. Following Rawls’ interpretation, a fairness norm should coincide with the goal of
maximizing the collective utility represented by the individual utility of the less advantaged agent.

Definition 2.7. (Normative game with fairness norm à la Rawls)
A normative game with fairness norm à la Rawls is a normative game NG = (N , (Si)i∈N ,U, I, κ) such
that for all s ∈ S:

I(s) = min
i∈N

Ui(s)

In this paper we focus on fairness norm à la Rawls. In particular, we are interested in studying the
relationship between the agents’ sensitivities to this kind of norm and their behaviors in a repeated game
such as the Prisoner’s Dilemma in which the agents learn from their past experiences. To this aim, in the
next section, we provide a dynamic extension of our model of guilt aversion.

3. Dynamic extension

In the dynamic version of our model, we assume that every agent in a given normative game has prob-
abilistic expectations about the choices of the other agents. These expectations evolve over time. The
following concept of history captures this idea.

Definition 3.1. (History)
Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game. A history (for NG) is a tuple H = ((ωi,j)i,j∈N ,
(ci)i∈N ) such that, for all i, j ∈ N :

• ωi,j : N −→ ∆(Sj) is a function assigning to every time t ∈ N a probability distribution on Sj ,

• ci : N −→ Si is a choice function specifying the choice of agent i at each time point t ∈ N.

For every t ∈ N and sj ∈ Sj , ωi,j(t)(sj) denotes agent i’s subjective probability at time t about the
fact that agent j will choose action sj ∈ Sj . For notational convenience, we write ωti,j(sj) instead of
ωi,j(t)(sj). For all i, j ∈ N , t ∈ N and s−i ∈ S−i we moreover define:

ωti(s−i) =
∏

j∈N\{i}

ωti,j(sj)

ωti(s−i) denotes agent i’s subjective probability at time t about the fact that the other agents will choose
the joint action s−i.

The following definition introduces the concept of agent i’s expected utility at time t. Notice that the
concept of utility used in the definition is the one of guilt-dependent utility of Definition 2.5. Indeed, we
assume a rational agent is an agent who maximizes her expected guilt-dependent utility reflecting both
the agent’s desires and the agent’s moral considerations determined by her sensitivity to the norm.
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Definition 3.2. (Expected utility at time t)
Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game, let H = ((ωi,j)i,j∈N , (ci)i∈N ) be a history for
NG and let t ∈ N. Then, the expected utility of action si ∈ Si for the agent i at time t, denoted by
EU t

i(si), is defined as follows:

EU t
i(si) =

∑
s′−i∈S−i

ωti(s
′
−i)×U ∗i (si, s

′
−i)

As the following definition highlights, an agent is rational at a given time point t, if and only if her
choice at time t maximizes expected utility.

Definition 3.3. (Rationality at time t)
Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game, let H = ((ωi,j)i,j∈N , (ci)i∈N ) be a history for
NG and let t ∈ N. Then, agent i is rational at time t if and only if EU t

i(ci(t)) ≥ EU t
i(si) for all si ∈ Si.

We assume that agents learn via fictitious play [14], a learning algorithm introduced in the area of
game theory and widely used in the area of multi-agent systems (see, e.g., [25]). The idea of fictitious
play is that each agent best responds to the empirical frequency of play of her opponents. The assumption
underlying fictitious play is that each agent believes that her opponents are playing stationary strategies
that do not depend from external factors such as the other agents’ last moves.

Definition 3.4. (Learning via fictitious play)
Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game and let H = ((ωi,j)i,j∈N , (ci)i∈N ) be a history
for NG . Then, agent i learns according to fictitious play (FP) along H , if and only if for all j ∈ N \ {i},
for all sj ∈ Sj and for all t > 0 we have:

ωti,j(sj) =
obsti,j(sj)∑

s′j∈Sj
obsti,j(s

′
j)

where obs0
i,j(sj) = 0 and for all t > 0:

obsti,j(sj) =

{
obst−1

i,j (sj) + 1 if cj(t− 1) = sj

obst−1
i,j (sj) if cj(t− 1) 6= sj

Note that obsti,j(sj) in the previous definition denotes the number of agent i’s past observations at time t
of agent j’s strategy sj .

Two notions of convergence for fictitious play are given in the literature, one for pure strategies and
one for mixed strategies. Let H = ((ωi,j)i,j∈N , (ci)i∈N ) be a history. Then, H converges in the pure
strategy sense if and only if there exists a pure strategy s ∈ S and t̄ ∈ N such that for all i ∈ N :

ci(t) = si for all t ≥ t̄

On the contrary, H converges in the mixed strategy sense if and only if there exists a mixed strategy
σ ∈ Σ such that for all i ∈ N and for all si ∈ Si:

lim
t̄→∞

|{t ≤ t̄ : ci(t) = si}|
t̄+ 1

= σi(si)
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Clearly, convergence in the pure strategy sense is a special case of convergence in the mixed strategy
sense.

It has been proved [26] that for every non-degenerate 2× 2 game (i.e., two-player game where each
player has two strategies available) and for every history H for this game, if all agents are rational and
learn according to fictitious play along H , then H converges in the mixed strategy sense. The fact that
the game is non-degenerate just means that, for every strategy of the second player there are no different
strategies of the first player which guarantee the same payoff to the first player, and for every strategy of
the first player there are no different strategies of the second player which guarantee the same payoff to
the second player.5 A generalization of this result to 2× n games has been given by [28].

4. Mathematical analysis in the PD with fairness norm à la Rawls

In this section, we provide convergence results for fictitious play in the case of iterated Prisoner’s
Dilemma in which players are more or less sensitive to the fairness norm à la Rawls.

The first thing we can observe is that for any possible combination of norm sensitivity values for the
two players, the behaviors of both players will converge to mixed strategies. In particular:

Theorem 4.1. Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game with fairness norm à la Rawls such
that (N , (Si)i∈N ,U) is the Prisoner’s Dilemma and let H = ((ωi,j)i,j∈N , (ci)i∈N ) be a history for NG .
Moreover, assume that every agent in N learns according to fictitious play along H and is rational for all
t ≥ 0. Then, H converges in the mixed strategy sense.

Proof:
For all possible values of κ1 and κ2, the transformed PD in which the utility function Ui is replaced by
U ∗i for all i ∈ {1, 2} is non-degenerate. The transformed PD is represented in Figure 2. Hence, the
theorem follows from the fact that, as observed in the previous section, fictitious play is guaranteed to
converge in the class of non-degenerate 2× 2 games.

C D

C R,R −κ1P, T − κ2R

D T − κ1R,−κ2P P, P

Figure 2. Prisoner’s Dilemma with transformed utilities according to fairness norm à la Rawls.
ut

Our second result is the following theorem about convergence in the pure strategy sense. The the-
orem highlights that if at the beginning of the learning process every player has a uniform probability
distribution over the strategies of the other player and the value of norm sensitivity is lower than the
following threshold for cooperativeness

θtc =
P + T −R
R− P

5Miyazawa [27] assumed a particular tie-breaking rule to prove convergence of fictitious play in 2× 2 games.
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for both players, then the two players will always play mutual defection. On the contrary, if at the
beginning of the learning process every player has a uniform probability distribution over the strategies
of the other player and the value of norm sensitivity is higher than the threshold θtc for both players, then
the two players will always play mutual cooperation.

Theorem 4.2. Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game with fairness norm à la Rawls such
that (N , (Si)i∈N ,U) is the Prisoner’s Dilemma and let H = ((ωi,j)i,j∈N , (ci)i∈N ) be a history for NG .
Moreover, assume that every agent in N learns according to fictitious play along H and is rational for all
t ≥ 0, and that ω0

i,j(sj) = 0.5 for all i, j ∈ {1, 2} and for all sj ∈ {C,D}. Then:

• if κ1 < θtc and κ2 < θtc then c1(t) = c2(t) = D for all t ≥ 0,

• if κ1 > θtc and κ2 > θtc then c1(t) = c2(t) = C for all t ≥ 0.

Proof:
Assume that every agent in N learns according to fictitious play along H and is rational for all t ≥ 0,
and that ω0

i,j(sj) = 0.5 for all i, j ∈ {1, 2} and for all sj ∈ {C,D}. We are going to prove that, for
all i, j ∈ {1, 2}, if κi > P+T−R

R−P then EU 0
i (C) > EU 0

i (D) and that if κi < P+T−R
R−P then EU 0

i (D) >

EU 0
i (C).
First of all, let us compute the values of EU 0

i (D) and EU 0
i (C):

EU 0
i (D) = 0.5× P + 0.5× (T − κi × (R− S))

= 0.5× P + 0.5× (T − κi ×R)
= 0.5× (P + T − κi ×R)

EU 0
i (C) = 0.5×R+ 0.5× (S − κi × (P − S))

= 0.5×R+ 0.5× (−κi × P )

= 0.5× (R− κi × P )

It follows that EU 0
i (D) > EU 0

i (C) if and only if P + T − κi × R > R − κi × P . The latter is
equivalent to κi < P+T−R

R−P . Therefore, we have EU 0
i (D) > EU 0

i (C) if and only if κi < P+T−R
R−P . By

analogous argument, we can prove that EU 0
i (C) > EU 0

i (D) if and only if κi > P+T−R
R−P .

It is routine task to verify that, for all possible values of κ1 and κ2 in the original normative game
NG , the strategy profile (D,D) is a strict Nash equilibrium in the transformed PD depicted in Figure 2
in which the utility function Ui is replaced by U ∗i for all i ∈ {1, 2}. Hence, by Proposition 2.1 in [29]
and the fact that every agent is rational for all t ≥ 0, it follows that if κ1 <

P+T−R
R−P and κ2 <

P+T−R
R−P

then c1(t) = c2(t) = D for all t ≥ 0.

It is also a routine to verify that, if κi > T−R
R−S for all i ∈ {1, 2}, then the strategy profile (C,C)

is a strict Nash equilibrium in the transformed PD depicted in Figure 2. Hence, by Proposition 2.1 in
[29], the fact that every agent is rational for all t ≥ 0 and the fact that P+T−R

R−P > T−R
R−S , it follows that if

κ1 >
P+T−R
R−P and κ2 >

P+T−R
R−P then c1(t) = c2(t) = C for all t ≥ 0. ut



E. Lorini and R. Mühlenbernd / The Long-Term Benefits of Following Fairness Norms 13

5. Computational results in the PD with fairness norm à la Rawls

Theorem 4.2 shows that if both κ-values are smaller than the threshold for cooperativeness θtc, both
players converge to mutual defection, whereas if both κ-values are greater than this threshold, both
players converge to mutual cooperation. Note that this does not cover the whole space of tuples of κ-
values, cf. how do agents operate, if one value is smaller and the other value is greater that θtc? In
these terms we are faced with the more general question: for which combination of κ-values do agents
converge to mutual cooperation or to mutual defection under fictitious play?

To examine the convergence behavior of players under fictitious play for different κ-values, we con-
ducted multiple computations of repeated interactions, for different game parameters and a large subset
of the κ2-space. We recorded the results and we managed to deduce the conditions determining the
convergence behavior that pertain perfectly with the data. These conditions are as follows.

For all normative games with fairness norm à la Rawls NG = (N , (Si)i∈N ,U, I, κ) and history
H = ((ωi,j)i,j∈N , (ci)i∈N ) for NG such that (N , (Si)i∈N ,U) is the Prisoner’s Dilemma, every agent
in N learns according to fictitious play along H , is rational for all t ≥ 0, and ω0

i,j(sj) = 0.5 for all
i, j ∈ {1, 2} and for all sj ∈ {C,D}, the following three facts are observed:

1. if (κ1 − limmx)× (κ2 − limmx) < curvmx then ∃t′ ∈ N : c1(t) = c2(t) = D for all t ≥ t′,

2. if (κ1 − limmx)× (κ2 − limmx) > curvmx then ∃t′ ∈ N : c1(t) = c2(t) = C for all t ≥ t′,

3. if (κ1 − limmx)× (κ2 − limmx) = curvmx then both players converge to a mixed strategy,

whereby:

curvmx =

(
PT

(R+ P )(R− P )

)2

limmx =
P 2 +R(T −R)

(R+ P )(R− P )

Note that the equation (κ1− limmx)× (κ2− limmx) = curvmx defines a separating curve between
the convergence to mutual cooperation and mutual defection: for at least one of both κ-values being less
than given, the first condition holds and fictitious play converges to mutual defection, whereas for at least
one of both κ-values being greater than given, the second condition holds and fictitious play converges
to mutual cooperation. For each pair of κ-values that fulfills the equation, the third condition holds and
fictitious play converges to a mixed strategy for each player. This curve can be defined as a function for
the convergence to a mixed strategy fmx over κ1-values6:

fmx(κ1) =
curvmx

κ1 − limmx
+ limmx

The function fmx is depicted in Figure 3.

A necessary condition of function fmx to be correct is that it has an intersection point for κ1 =
κ2 = θtc, as proved in Theorem 5.1. An implication of function fmx to be correct is the fact that the
6Note that the function forms an anallagmatic curve, cf. it inverts into itself.
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κ1

κ2 fmx(κ1)

θtc

θtc

limmx

limmx

Figure 3. The dark gray/light gray area shows in accordance with Theorem 4.2 that if both κ-values are smaller
than the threshold for cooperativeness θtc = P+T−R

R−P , both players behave according to mutual defection (dark
gray area), whereas if both κ-values are greater than this threshold, both players behave according to mutual
cooperation (light gray area). The curve represents the function for non-convergence fmx and defines for which
combination of κ-values players converge to mutual cooperation (right of/above the curve), converge to mutual
defection (left of/below the curve) or converge to a combination of mixed strategies (points of the curve). Note
that i) limmx is the asymptote of the function fmx, thus it defines a lower bound for mutual cooperation to emerge,
and ii) κ1 = κ2 = θtc is an intersection point of the curve.

value limmx is the asymptote of the function fmx, as proved in Theorem 5.2, and therefore determines
a lower bound for κ-values that enable the convergence to mutual cooperation. Finally, note that the
value curvmx determines the curvature of the function. Since limmx and curvmx both depend on the
parameters of the PD game, the asymptote and curvature of a function fmx can strongly differ among
different games. Figure 4 shows the different curves of function fmx for different game parameters.

Theorem 5.1. κ1 = κ2 = θtc is an intersection point of function fmx.

Proof:
We are going to show that fmx(θtc) = θtc:
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fmx(θtc) =
curvmx

θtc − limmx
+ limmx

=

(
PT

(R+P )(R−P )

)2
P+T−R
R−P − P 2+R(T−R)

(R+P )(R−P )

+ limmx

=

(
PT

(R+P )(R−P )

)2
(R+P )(P+T−R)
(R+P )(R−P ) −

P 2+R(T−R)
(R+P )(R−P )

+ limmx

=

(
PT

(R+P )(R−P )

)2
(R+P )(P+T−R)−(P 2+R(T−R))

(R+P )(R−P )

+ limmx

=

(
PT

(R+ P )(R− P )

)2

× (R+ P )(R− P )

(R+ P )(P + T −R)− (P 2 +R(T −R))
+ limmx

=

(
PT

(R+ P )(R− P )

)2

× (R+ P )(R− P )

PT
+ limmx

=
PT

(R+ P )(R− P )
+ limmx

=
PT

(R+ P )(R− P )
+

P 2 +R(T −R)

(R+ P )(R− P )

=
PT + P 2 +R(T −R)

(R+ P )(R− P )

=
PT + P 2 +RT −R2

(R+ P )(R− P )

=
(P + T −R)(R+ P )

(R+ P )(R− P )

=
P + T −R
R− P

= θtc

ut
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θtc

limmx

θtc

limmx

θtc

limmx

fmx[G1]
fmx[G2]

fmx[G3]

κ1

κ2

0

2

4

6

8

0 2 4 6 8

Game G1 G2 G3

T 3 4 7
R 2 3 6
P 1 2 2

θtc 2 3 .75

limmx 1 1.4 .125

curvmx 1 2.56 ≈ .2

Figure 4. Exemplary Prisoner’s Dilemma gamesG1 (T = 3, R = 2, P = 1), G2 (T = 4, R = 3, P = 2) andG3

(T = 7, R = 6, P = 2) and their corresponding values θtc, limmx and curvmx (right table). The graph shows the
corresponding curves of the function fmx for each game. Note that the value curvmx behaves anti-proportional to
the curvature of the function.

Theorem 5.2. limmx is the asymptote of function fmx.

Proof:
We are going to show that lim

κ→+∞
fmx(κ) = limmx:

lim
κ→+∞

fmx(κ) = lim
κ→+∞

(
curvmx

κ− limmx
+ limmx

)
= lim

κ→+∞

(
curvmx

κ− limmx

)
+ limmx

= limmx ut

6. Tournaments and experimental results

Let’s assume we have a mixed population in terms of sensitivity to fairness norm κ. There might be
individuals with high κ-values, with low κ-values or with no sensitivity to that norm at all. In such
a setup it is reasonable to ask how beneficial fairness norm sensitivity might be. Is a low, middle or
high sensitivity rather detrimental or profitable - especially in comparison with the outcome of the other
individuals of the population? To get a general idea of how beneficial a particular degree of sensitivity to
the fairness norm might be, we tested the performance of agents with different κ-values in a tournament.
Such a tournament was inspired by Axelrod’s tournament of the repeated Prisoner’s Dilemma [30]. In
Axelrod’s tournament a number of agents play the repeated Prisoner’s Dilemma - each agent against
every other agent - for a particular number of repetitions. Each agent updates her behavior according to



E. Lorini and R. Mühlenbernd / The Long-Term Benefits of Following Fairness Norms 17

a rule defined by her creator. The score of each encounter is recorded, and the agent with the highest
average utility over all encounters wins the tournament.

In our tournament we also define n agents 0, 1, 2, ..., n − 1, where each agent plays against each
other agent for a number of repetitions tmax. Differently from Axelrod’s tournament, all agents i) play
the Prisoner’s Dilemma as a normative game with fairness norm à la Rawls, and ii) have the same update
rule, namely, fictitious play. Although the agents have the same update rule, they differ in another crucial
aspect, namely, their sensitivity to the fairness norm. To keep things simple, we predefine that their
sensitivity i) is bounded above by a value κmax ∈ R>0, and ii) is equally distributed among the n agents,
by ascribing sensitivity to the fairness norm κi = i×κmax

n−1 to agent i.7 A tournament works as follows:
for each pair of agents i, j we conducted a normative game with fairness norm à la Rawls based on the
Prisoner’s Dilemma for a number of tmax repetitions, whereby agents i and j learn according to fictitious
play along their common history.8 For each agent i her average utility TUi - called tournament utility -
is computed, which is the average utility value an agent scored over all interactions.

For a given set of agents A that participate in such a tournament, the winner is the agent i ∈ A who
obtains the maximal tournament utility TUi. In case that a tournament has multiple agents with maximal
tournament utility, the winner is the one of those who has minimum sensitivity to the fairness norm, or
in other words, the minimal index i.

We refer to the winner’s κi value as the optimal fairness norm sensitivity κ∗, with respect to her
tournament utility. In formal terms, we have that κ∗ = κi if and only if i ∈ arg maxz∈A TUz and
κi < κj for all j ∈ arg maxz∈A TUn such that i 6= j.

We computed 4 tournaments, each with 200 agents playing a normative gameNGwith fairness norm
à la Rawls based on a Prisoner’s Dilemma with T = 3, R = 2, P = 1 and S = 0. For such a game θtc is
2, and to ensure an equal portion of cooperative and non-cooperative agents, we set κmax = 2× θtc = 4.
The tournaments differed in the parameter for tmax, here we chose the values 6, 20, 50 and 200. Figure 5
shows the performance of each agent in the appropriate tournament and the appended table shows the κ∗

value of each tournament’s winner. The results of the tournaments indicate that the optimal sensitivity to
the fairness norm is by any means dependent on tmax and θtc. To verify this indication we computed a
great number of further tournaments with different values tmax ∈ {2k|k ∈ N} and κmax values.9 The
results support – without any exception – the following two observations:

1. For two tournaments that differ solely in the parameters tmax and t′max, whereby the tournaments’
optimal values of sensitivity to the fairness norm are κ∗ and κ′∗, respectively, it holds that:

if tmax > t′max then κ∗ ≥ κ′∗

2. For every tournament it holds that:
κ∗ > θtc

7Note that to ascribe a value of fairness norm sensitivity κ = i×κmax
n−1

to agent i ensures that agent 0 has a sensitivity to the
fairness norm of 0, agent n − 1 has one of κmax, and all other agents’ sensitivity to the fairness norm are equally distributed
between these boundaries.
8In case an agent has the situation where playing C or D both have the same expected utility, she uses a tie-breaking rule (see
Section 7), here the rule is to play D.
9We restricted tmax to be an even number, since odd numbers of interactions can produce little bumps in the tmax-κ∗ relation-
ship due to alternating history behavior.
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κ

TU

0 1 2 3 4
1

1.2

1.4

1.6

1.8

θtc

tmax = 200tmax = 50tmax = 20tmax = 6

tmax κ∗

6 2.02
20 3.5
50 3.92

200 3.96

Figure 5. The resulting tournament utilities of four different tournaments with 200 agents each, pairwise playing
a normative game with fairness norm à la Rawls based on a Prisoners Dilemma game with T = 3, R = 2, P = 1
and S = 0. The right table shows for each tmax parameter the appropriate optimal sensitivity to the fairness norm
κ∗ of the tournament’s winner.

The first observation unveils one condition for which a high sensitivity to the fairness norm à la
Rawls is beneficial. It tells us that κ∗ is monotonically increasing with respect to tmax, i.e. the value
of the optimal sensitivity to the fairness norm increases with the number of repetitions of a repeated
game in such a tournament. This result is in line with former insights, since i) we showed in Section
4 that a high value of fairness norm sensitivity supports cooperative behavior, and ii) we know from
studies of repeated Prisoner’s Dilemma that cooperative behavior is especially beneficial in combination
with reputation [10], a virtue that needs repetition to be established. However, as we will delineate
later, repetition can also be beneficial for cooperative behavior without attributing reputation to single
agents. The second observation says that it is optimal to have a sensitivity to the fairness norm that
ensures preliminary cooperativeness.10 This stresses the fact that a great fairness norm sensitivity is only
beneficial if it not only enables a line of mutual cooperation, but it also implies an initial disposition to
start it.

7. Normative meta-games

Before we analyze normative games with fairness norms à la Rawls under evolutionary aspects, we want
to convert the game to another game model that has two particular features: i) it indirectly entails the
average payoffs for a particular number of repeated plays, and ii) its strategy set entails different levels

10As we have shown in Theorem 4.2, if agents have a sensitivity to fairness κ > θtc, their first move is to cooperate. This
behavioral characteristic can be seen as preliminary cooperativeness.
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of sensitivity to the fairness norm. The basic idea is to convert a normative game NG into a normative
meta-game. The average utility of such a number of encounters, called the history utility, is defined as
follows. In order to keep the formal framework relatively simple, in this section, we only consider two-
player games. Furthermore, we assume that every player i is associated with a linear ordering ≺i over
the strategies in her strategy set. This linear ordering is used to define a tie-breaking rule that selects a
strategy, in case two or more strategies have the same expected utility.

Definition 7.1. (History utility)
Let NG = ({1, 2}, (Si)i∈{1,2},U, I, κ) be a two-player normative game and let t ∈ N. Then, for every
i ∈ {1, 2}, player i’s history utility HU i : N −→ R for NG and for a number of rounds t is defined as
follows:

HU i(t) =
∑

0≤t′<t

Ui(c1(t′), c2(t′))

t

where c1 and c2 are the choice functions of the unique history H = ((ωi,j)i,j∈{1,2}, (ci)i∈{1,2}) for NG
such that:

• players 1 and 2 learn according to fictitious play and are rational along H ,

• ω0
i,j(sj) = 1

|Sj | for all i, j ∈ {1, 2} and for all sj ∈ Sj ,

• for all t ∈ N and for all i ∈ {1, 2}, if X = arg maxsi∈Si EU
t
i(si) and |X| > 1 then ci(t) =

tie−break i(X),

and tie−break i(X) is the maximal element in X according to the linear ordering ≺i.

Player i’s history utility for the normative game NG and for the number of rounds t is the average
utility that player i will obtain after having played the game for t rounds under the following three
conditions: (i) every player is rational and learns according to fictitious play during the game, (ii) every
player has a uniform probability distribution over the strategies of the other at the beginning of the game,
and (iii) every player uses her tie-breaking rule in order to select a strategy, in case two or more strategies
have the same expected utility. Notice that conditions (i), (ii) and (iii) together guarantee the uniqueness
of the history H .

Given the definition of history utility, the concept of normative meta-game is defined as follows.

Definition 7.2. (Normative meta-game)
Let G = ({1, 2}, (Si)i∈N ,U) be a two-player normal-form game, let I be an ideality function over∏
i∈N Si, let tmax ∈ N≥1 be the number of rounds and let K ⊂ R≥0 be a finite set of values of norm

sensivity. Then, the normative meta-game NMG induced by G , I, tmax and K is the two-player normal-
form game ({1, 2}, (S ′i)i∈N ,U ′) such that:

• for every i ∈ {1, 2}, S ′i = K;

• for every x, y ∈ K and for every i ∈ {1, 2}:

U ′i (x, y) = HU x,y
i (tmax)
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0 1 2

0 1, 1 1, 1 3, 0

1 1, 1 1, 1 3, 0

2 0, 3 0, 3 2, 2

0 1 2

0 1, 1 1, 1 1.5, 0.75

1 1, 1 1, 1 1.5, 0.75

2 0.75, 1.5 0.75, 1.5 2, 2

Figure 6. Example of normative meta-games for the Prisoner’s dilemma with payoffs R = 2, S = 0, T = 3 and
P = 1, with fairness norm à la Rawls (with player 1 being the row player and player 2 being the column player),
with set of norm sensitivity valuesK = {0, 1, 2}, and with numbers of rounds tmax = 1 (left figure) and tmax = 4
(right figure). It is assumed that the two players use the same tie-breaking rule which consists in playing C when
playing C and D both have the same expected utility.

where HU x,y
i (tmax) is player i’s history utility for the number of rounds tmax and for the normative

game NG = ({1, 2}, (Si)i∈N ,U, I, κ) such that κ1 = x and κ2 = y.

In other words, the normative meta-game induced by the two-player normal-form game G = ({1, 2}, (Si)i∈N ,U),
the ideality function I, the number of rounds tmax and the finite set K of norm sensitivity values is the
two-player normal-form game such that: (i) the strategies of the players are the possible values of norm
sensitivity in K, (ii) a strategy profile is a pair (x, y), where x is the value of norm sensitivity for player
1 and y is the value of norm sensitivity for player 2, and (iii) the utility of the strategy profile (x, y) for
player i ∈ {1, 2} is player i’s history utility for the number of rounds tmax rounds and for the normative
game NG = ({1, 2}, (Si)i∈N ,U, I, κ) in which player 1’s value of norm sensitivity is x and player 2’s
value of norm sensitivity is y.

Let us consider the normal-form game G = ({1, 2}, (Si)i∈N ,U) corresponding to the Prisoner’s
Dilemma with payoffs R = 2, S = 0, T = 3 and P = 1. Moreover, let I be the ideality function cor-
responding to the fairness norm à la Rawls. Figure 6 represents the two normative meta-games induced
by G and I, under the assumption that the set of norm sensitivity values is K = {0, 1, 2} and that the
number of rounds is tmax = 1 (left figure), or tmax = 4 (right figure), respectively. We assume that
players 1 and 2 use the same tie-breaking rule which consists in playing C when playing C and D both
have the same expected utility.

8. Normative meta-games under population dynamics

Note that in evolutionary game theory (EGT), i) the interpretation of a strategy is a specific feature or
disposition, or – in sense of cultural evolution – a specific opinion, behavior or attitude, and ii) the inter-
pretation of payoff is the fitness for reproduction. In this sense an EGT analysis of normative meta-games
depicts the evolutionary dynamics (of a population) of repeatedly interacting and learning individuals
with different attitudes or dispositions in terms of fairness norm sensitivity. Note that by combining
learning dynamics (in form of fictitious play entailed as final utility values in the meta-game) and evo-
lutionary dynamics in one model, we incorporate two essential forces of human evolution: ontogeny
(individual life-time learning) and crossgenerational transmission (biological or cultural11). This dif-

11Note that evolutionary dynamics, such as the replicator dynamics, might represent biological or cultural evolution, dependent
on the features that are transmitted. We abstract from the concrete type here and solely say that evolutionary dynamics represent
the crossgenerational transmission of individual features.
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ferentiation is important, since while the ontogenetic process (repeated fictitious play) represents how
and why agents display individual features (fairness sensitivity, cooperativeness), the process of biologi-
cal/cultural transmission factors in stability aspects of the whole populations that represent configurations
of such features.12

To understand the evolutionary properties of normative meta-games, we tested them under a compu-
tational non-deterministic variant of the well-known replicator dynamics [17] that addresses unfaithful
replication: mutation (see replicator-mutator equation [36]). We call this variant replicator-mutator-
similarity dynamics (RMS dynamics), which considers a particular aspect of normative meta-games,
namely that strategies are real numbers and therefore can be compared by similarity. The similar-
ity between two strategies x, x′ ∈ S of a normative meta-game can be simply defined by a function
sim : S2 −→ R, whereby sim(x, x′) = xmax−|x−x′|

xmax
with xmax = max(S). Given a similarity func-

tion, the intuition of the RMS dynamics is as follows: we think that the evolutionary process is more
realistic if mutation depends on the similarity between strategies. E.g. a parent with strategy x = 0.6
has more likely a more similar mutant offspring, such as x = 0.5 or x = 0.7, than a less similar one,
such as x = 2.1. With this intuition we implemented a simple variant of the RMS dynamics, informally
described by the following RMS algorithm:

Definition 8.1. (Simple RMS algorithm)
The simple replicator-mutator-similarity (RMS) algorithm is given by the following computational steps:

1. Input: population size n ∈ N>1, mutation rate ε ∈ R, normative meta-game ({1, 2}, S, U);

2. Initialize population: create agent set A = {a1, a2, . . . an}, whereby each agent is assigned with a
strategy x ∈ S by function α : A −→ S. For notational convenience we write αi instead of α(ai);

3. Repeat until breaking condition φ:

(a) Compute agent’s total utility: Compute every agent’s global utility value for pairwise inter-
action with any other agent by the function GU : A −→ R, where:

GU(ai) =
∑

aj∈A,aj 6=ai

U(αi, αj)

(b) Compute strategy fitness: Compute every strategy’s fitness value by the function F : S −→
R, where:

F (x) =
∑

ai∈A,αi=x
GU(ai)

(c) Compute strategy offspring: Compute every strategy’s number of offspring by the function
O : S −→ N, where:

O(x) =

⌊
F (x)× n∑
x′∈S F (x′)

⌋
12The differentiation between individual learning and crossgenerational evolution is essential, since both processes play dif-
ferent roles in human evolution and also in this model. This point is especially important concerning the fact that processes
of learning dynamics and evolution dynamics show often very similar characteristics. For example, it has been shown for a
range of different game classes that individual imitation/learning models converges to the replicator dynamics, such as shown
for conditional imitation [31, 32], reinforcement learning [33, 34], or Q-learning [35].
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(d) Compute new population: (i) empty set A, (ii) for each strategy x ∈ S: add O(x) players of
strategy x to A, (iii) while |A| < n: add another player with random strategy x ∈ S;13

(e) Mutation: For each ai ∈ A compute a random value φ ∈ [0.0, 1.0):

• If φ ≤ ε
2 :

change αi to α′i ∈ S, where α′i < αi and ∀x ∈ S : sim(α′i, αi) < sim(x, αi),14

• If ε
2 < φ ≤ ε:

change αi to α′i ∈ S, where α′i > αi and ∀x ∈ S : sim(α′i, αi) < sim(x, αi).15

Note that steps 3(a-d) of the simple RMS algorithm approaches a non-deterministic version of the repli-
cator dynamics [17] for a finite population.16 Furthermore, step 3(e) realizes similarity mutation in its
simplest way: with probability ε

2 a strategy is replaced with the most similar strategy with a smaller
value, and with probability ε

2 a strategy is replaced with the most similar strategy with a greater value.
Let us consider the normal-form game G = ({1, 2}, (Si)i∈N ,U) corresponding to the Prisoner’s

Dilemma with payoffs R = 2, S = 0, T = 3 and P = 1. Moreover, let I be the ideality function cor-
responding to the fairness norm à la Rawls. Figure 6 represents the two normative meta-games induced
by G and I, under the assumption that the set of norm sensitivity values is K = {0, 1, 2} and that the
number of rounds is tmax = 1 (left figure), or tmax = 4 (right figure), respectively. We assume that
players 1 and 2 use the same tie-breaking rule which consists in playing C when playing C and D both
have the same expected utility.

We tested the simple RMS algorithm for the following parameters and conditions:

• population size: n = 100

• mutation rate: ε = 0.1

• input game: the two-player normative meta-game induced by:

– the normal-form game G = ({1, 2}, (Si)i∈N ,U) corresponding to the Prisoner’s Dilemma
with payoffs R = 2, S = 0, T = 3 and P = 1,

– the ideality function I corresponding to the fairness norm à la Rawls,

– the maximal number of interactions tmax = 10,

– the set of values of norm sensitivity K = {0.0, 0.25, 0.5, 0.75, 1.0, . . . , 2.75, 3.0},
– whereby the utilities of the meta-game are computed with respect to a tie-breaking rule,

which consists of playing C, when playing C and D both have the same expected utility.

• initialization: ∀ai ∈ A : αi = 0.0

• breaking condition: number simulation steps > 10000

The result of an exemplary simulation run for the first 200 simulation steps is shown in Figure 7.
13It is routine to verify that

∑
x∈S O(x) ≤ n. In case that

∑
x∈S O(x) < n the new population would have less than n agents.

In that case new agents with a random strategy are added to A until |A| = n.
14If αi = min(S), i.o.w. there is no strategy x ∈ S with x < αi, then αi won’t be changed.
15If αi = max(S), i.o.w. there is no strategy x ∈ S with x > αi, then αi won’t be changed.
16The algorithm is non-deterministic, since in step (d) additional players with a random strategy might be added.
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Figure 7. Result of an exemplary simulation run with the simple RMS algorithm for the normative meta-game
NMG1. Note that strategies of unconditional defectors (k < θud = 0.5) are colored black, strategies of initial
defectors (θud ≤ k < θtc = 2.0) are colored gray, and strategies of initial cooperators (k ≥ θtc) are colored white.

Note first of all that the input game includes a threshold for cooperativeness θtc = 2.0. This fact
is represented in Figure 7 by marking all strategies with k < θtc as gray/black, and all strategies with
k ≥ θtc as white. Furthermore, the initialization of the simulation run produces an initial situation with
all agents having a norm sensitivity strategy of k = 0.0. This exemplary run reveals that a population of
unconditional defectors with no sensitivity to the fairness norm can evolve to a population of cooperators
with a fairness norm sensitivity above θtc.17 Thus, the evolutionary analysis of normative meta-games
reveals a possible path for the coevolution of cooperation and fairness norm sensitivity.

As a further step we were interested in extracting conditions that are supportive to such an evolution-
ary path ρ. Our subsequent analysis is guided by the following intuition: the more supportive a particular
condition to a specific evolutionary path ρ, the shorter the expected time that is needed for path ρ to be
passed through. Since we apply an experimental approach, we rate expected time by the average num-
ber of simulation steps over multiple simulation runs. Note that in this way we can make comparative
statements, such as ’for setting A the conditions are more supportive for the evolutionary path ρ than for
setting B, since ρ has a shorter average runtime to be passed through.

With this approach we want to measure the influence of tmax on the average runtime of an evolution-
ary path leading from a population of solely defectors with k = 0.0 to a population of solely cooperators
with k ≥ θtc. We used the RMS algorithm (Definition 8.1) with the following experimental settings:

• population size: n = 50

• mutation rate: ε = 0.1

• initialization: ∀ai ∈ A : αi = 0.0

17As shown with Theorem 4.2, every two agents with a fairness norm sensitivity above θtc do always cooperate.
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Figure 8. Average runtime until a population of cooperators has emerged over 100 simulation runs per experi-
ment. Experiments for various normative meta-games induced by different tmax-parameters, varying from 3 to
10. Black cycles represent the results of the experimental setting as described in the text. In three further lines
of experiments we made the same experiments by changing one of three parameters, either i) lowering ε to 0.05
(white triangles), ii) lowering n to 10 (black diamonds), or iii) changing to a more fine-grained segmentation of
the strategy continuum K to {0.0, 0.15, 0.3, ..., 3.0} (white squares). In comparison to the original setting, each
of these changes was detrimental to a low expected runtime, whereby increasing tmax was supportive for a low
expected runtime in each setting.

• breaking condition: ∀ai ∈ A : αi ≥ θtc

• input games: different two-player normative meta-games, each induced by

– the normal-form game G = ({1, 2}, (Si)i∈N ,U) corresponding to the Prisoner’s Dilemma
with payoffs R = 2, S = 0, T = 3 and P = 1,

– the ideality function I corresponding to the fairness norm à la Rawls,

– the set of values of norm sensitivity K = {0.0, 0.25, 0.5, 0.75, 1.0, . . . , 2.75, 3.0},
– whereby the utilities of the meta-game are computed with respect to a tie-breaking rule,

which consists of playing C, when playing C and D both have the same expected utility,

with each game induced by a different maximal number of interactions tmax

With this setting we made 8 experiments, each with a different tmax-value from 3 to 10. For each
experiment we conducted 100 runs and computed the average runtime. The results are depicted in Figure
8 (black circles). Note that the average runtime decreases with increasing tmax, e.g. for tmax = 3 the
average runtime is more than 800, whereas for tmax > 5 the average runtime is around 200.

All in all, the results show that a great tmax value is supportive for a low expected runtime of the
evolutionary path. This indicates the long-term benefits of sensitivity to fairness norm under evolutionary
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dynamics: the shift from a defecting to a cooperating population is quickly established by agents who
have enough time to develop a path of mutual cooperation, thereby signaling a high sensitivity to the
fairness norm; note that this happens with agents not being able to distinguish between their interactors,
a necessary condition for establishing reputation.18 In other words, a high number of repetition is sup-
portive for the emergence of fairness and cooperation without the establishment of reputation. The key
mechanism for the transition here is direct reciprocity: cooperators help each other directly.

Finally, note that there are three further free parameters: the population size n, the mutation rate
ε, and the definition of the set of strategies K. We made also a number of simulation runs by varying
these parameters. The results are also exemplified in Figure 8: lowering ε (here to 0.05, white trian-
gles) as well as a lowering n (here to 10, black diamonds), both are detrimental for a low expected
runtime. Furthermore, also a more fine-grained segmentation of the strategy continuum K (here to
K = {0.0, 0.15, 0.3, ..., 3.0}, white squares) is detrimental to a low expected runtime. All these simula-
tion runs also reveal that the more supportive a parameter is for a low expected runtime, the more resistant
is a population of cooperators with a fairness norm sensitivity above θtc against defectors with a fairness
norm sensitivity below θtc. This resistance against mutation/invasion can be formally proven by studying
the evolutionary stability of strategies with a fairness norm sensitivity above θtc for different parameter
settings. Such a formal analysis is currently under development and will be part of a subsequent study.

9. Conclusion

Our study presents a game-theoretic model of guilt in relation to sensitivity to the norm of fairness à la
Rawls. We employed this model – the normative game – on the Prisoner’s Dilemma, and worked out the
convergence behavior under fictitious play for any combination of the fairness norm sensitivity of both
players. We found out that a particular threshold for cooperation θtc plays a crucial role: it defines for
which combinations both agents cooperate or defect from the beginning, and for which combinations
they might learn to cooperate or to defect.

In a second step we introduced normative meta-games: a static description of iterated normative
games under fictitious play. With tools from evolutionary game theory we analyzed evolutionary aspects
of normative meta-games by applying the Simple RMS algorithm. We found that there exists an evo-
lutionary path from a population of only defectors with no fairness norm sensitivity to a population of
only cooperators with a fairness norm sensitivity above θtc. Our computational results suggest that the
probability of this evolutionary path to emerge is supported by a great number of repeated interactions
tmax. All in all, our analysis reveals an evolutionary path of the coevolution of cooperativeness and fair-
ness norm sensitivity. These results are in line with existing naturalistic theories of fairness according to
which sensitivity to fairness norm might be the product of evolution (see, e.g., [37]).

In the future, we plan to extend our learning-based and evolutionary analysis to a more general class
of games including the public goods game, that can be seen as a multi-agent variant of the PD, and the
ultimatum game. This generalization will allow us to compare our approach to existing literature on the
evolution of fairness in the ultimatum game [9].

In our model of repeated PD, social interaction is unstructured: every agent is allowed to play with
any other agent in the population. It has been shown that the structure of interaction, modeled as a social

18Note that reputation is a value that one would attribute to a specific individual: I help you, if you’ve helped others before
(indirect reciprocity). Without the ability to distinguish between others, it is not possible to elaborate the concept of reputation.
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network, can be relevant for the evolution of cooperation in the context of the repeated PD [15] and
for the emergence of cooperation in the ultimatum game played by a population of learning agents [8].
For instance, in the model proposed by De Jong et al. [8], learning agents play a repeated continuous
ultimatum game in a scale-free interaction network. Agents play together based on their connections
in the network and may decide to break existing connections and to create new ones in a random way.
Agents are motivated to disconnect themselves from (relative) defectors, as they prefer to play with
relative cooperators. The authors show that the agents’ capacity to rewire their connections in the network
greatly enhances their ability to reach agreement in the ultimatum game. Following de Jong et al., in
future work, we plan to extend both our learning model and our evolutionary model by a social network
component in order to investigate whether rewiring plays a role (i) in increasing the long-term benefit of
norm sensitivity and (ii) in promoting the selection of a relatively high degree of norm sensitivity.
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